
CSE333, Spring 2024L12: C++ Constructor Insanity

C++ Constructor Insanity
CSE 333

Instructor: Hannah C. Tang

Teaching Assistants:

Deeksha Vatwani Hannah Jiang Jen Xu

Leanna Nguyen Nam Nguyen Sayuj Shahi

Tanay Vakharia Wei Wu Yiqing Wang

Zohar Le

CSE333, Spring 2024L12: C++ Constructor Insanity

Lecture Outline

❖ Constructors

❖ Copy Constructors

❖ Assignment

❖ Destructors

❖ An extended example

3

CSE333, Spring 2024L12: C++ Constructor Insanity

Constructors

❖ A constructor (ctor) initializes a newly-instantiated object

▪ A class can have multiple constructors that differ in parameters

• Which one is invoked depends on how the object is instantiated

❖ Written with the class name as the method name:
Point(const int x, const int y);

4

CSE333, Spring 2024L12: C++ Constructor Insanity

Default Constructor

❖ The default constructor does not take any parameters

❖ C++ will automatically synthesize a default constructor if

you have no user-defined constructors

▪ Calls the default ctors on all non-“plain old data” (non-POD)

member variables

▪ Will fail if you have non-initialized const or reference data

members

5

Point();

CSE333, Spring 2024L12: C++ Constructor Insanity

Synthesized Default Constructor

6

class SimplePoint {

public:

// no constructors declared!

int get_x() const { return x_; } // inline member function

int get_y() const { return y_; } // inline member function

double Distance(const SimplePoint& p) const;

void SetLocation(const int x, const int y);

private:

int x_; // data member

int y_; // data member

}; // class SimplePoint SimplePoint.h

#include "SimplePoint.h"

... // definitions for Distance() and SetLocation()

int main(int argc, char** argv) {

SimplePoint x; // invokes synthesized default constructor

return 0;

}

SimplePoint.cc

CSE333, Spring 2024L12: C++ Constructor Insanity

Synthesized Default Constructor

❖ If you define any constructors, C++ assumes you have

defined all the ones you intend to be available and will

not add any others

7

#include "Point.h"

// defining a constructor with two arguments

Point::Point(const int x, const int y) {

x_ = x;

y_ = y;

}

void foo() {

Point x; // compiler error: if you define any

// ctors, C++ will NOT synthesize a

// default constructor for you.

Point y(1, 2); // works: invokes the 2-int-arguments

// constructor

}

CSE333, Spring 2024L12: C++ Constructor Insanity

Multiple Constructors (overloading)

#include "Point.h"

// default constructor

Point::Point() {

x_ = 0;

y_ = 0;

}

// constructor with two arguments

Point::Point(const int x, const int y) {

x_ = x;

y_ = y;

}

void foo() {

Point x; // invokes the default constructor

Point a[3]; // invokes the default ctor 3 times

// (fails if no default ctor)

Point y(1, 2); // invokes the 2-int-arguments ctor

}

8

CSE333, Spring 2024L12: C++ Constructor Insanity

Initialization Lists

❖ C++ lets you optionally declare an initialization list as part

of a constructor definition

▪ Initializes fields according to parameters in the list

▪ The following two are (nearly) identical:

9

// constructor with an initialization list

Point::Point(const int x, const int y) : x_(x), y_(y) {

std::cout << "Point constructed: (" << x_ << ",";

std::cout << y_<< ")" << std::endl;

}

Point::Point(const int x, const int y) {

x_ = x;

y_ = y;

std::cout << "Point constructed: (" << x_ << ",";

std::cout << y_<< ")" << std::endl;

}

CSE333, Spring 2024L12: C++ Constructor Insanity

Initialization vs. Construction

10

class Point3D {

public:

// constructor with 3 int arguments

Point3D(const int x, const int y, const int z) : y_(y), x_(x) {

z_ = z;

}

private:

int x_, y_, z_; // data members

}; // class Point3D

First, initialization list is applied.

Next, constructor body is executed.

CSE333, Spring 2024L12: C++ Constructor Insanity

Initialization vs. Construction

❖ Data members in initializer list are initialized in the order they

are defined in the class, not by the initialization list ordering (!)

▪ Data members that don’t appear in the initialization list are default

initialized/constructed before body is executed

❖ Initialization preferred to assignment to avoid extra steps of

default initialization (construction) followed by assignment

▪ (and no, real code should never mix the two styles this way ☺)
11

class Point3D {

public:

// constructor with 3 int arguments

Point3D(const int x, const int y, const int z) : y_(y), x_(x) {

z_ = z;

}

private:

int x_, y_, z_; // data members

}; // class Point3D

CSE333, Spring 2024L12: C++ Constructor Insanity

Initialization vs. Construction

❖ The difference between initialization and assignment start

to matter when we have:

▪ objects as member variables

▪ const member variables

▪ reference member variables

12

class Triangle {

public:

Triangle(const Point& p1, const Point& p2, const Point& p3)

: p1_(p1.get_x(), p1.get_y()) {

// constructor body

}

private:

Point p1_, p2_, p3_;

const Point kOrigin;

}; // class Triangle

2-parameter constructor
called on p1_, but default
constructor called on p2_,
p3_, and kOrigin – is the

default constructor's
behavior what we want?

Triangle.h

CSE333, Spring 2024L12: C++ Constructor Insanity

Lecture Outline

❖ Constructors

❖ Copy Constructors

❖ Assignment

❖ Destructors

❖ An extended example

13

CSE333, Spring 2024L12: C++ Constructor Insanity

Copy Constructors

❖ C++ has the notion of a copy constructor (cctor)

▪ Used to create a new object as a copy of an existing object

14

Point::Point(const int x, const int y) : x_(x), y_(y) { }

// copy constructor

Point::Point(const Point& copyme) {

x_ = copyme.x_;

y_ = copyme.y_;

}

void foo() {

Point x(1, 2); // invokes the 2-int-arguments constructor

Point y(x); // invokes the copy constructor

// could also be written as "Point y = x;"

}

▪ Initializer lists can also be used in copy constructors (preferred)

CSE333, Spring 2024L12: C++ Constructor Insanity

When Do Copies Happen?

❖ The copy constructor is invoked if:

▪ You initialize an object from

another object of the same

type:

▪ You pass a non-reference

object as a value parameter

to a function:

▪ You return a non-reference

object value from a function:

15

void foo(Point x) { ... }

Point y; // default ctor

foo(y); // copy ctor

Point x; // default ctor

Point y(x); // copy ctor

Point z = y; // copy ctor

Point foo() {

Point y; // default ctor

return y; // copy ctor

}

CSE333, Spring 2024L12: C++ Constructor Insanity

Compiler Optimization

❖ The compiler sometimes uses a “return by value

optimization” or “move semantics” to eliminate

unnecessary copies

▪ Sometimes you might not see a constructor get invoked when you

might expect it

16

Point foo() {

Point y; // default ctor

return y; // copy ctor? optimized?

}

Point x(1, 2); // two-ints-argument ctor

Point y = x; // copy ctor

Point z = foo(); // copy ctor? optimized?

CSE333, Spring 2024L12: C++ Constructor Insanity

Synthesized Copy Constructor

❖ If you don’t define your own copy constructor, C++ will

synthesize one for you

▪ It will do a shallow copy of all of the fields (i.e. member variables)

of your class

▪ Sometimes the right thing; sometimes the wrong thing

17

#include "SimplePoint.h"

int main(int argc, char** argv) {

SimplePoint x;

SimplePoint y(x); // invokes synthesized copy constructor

...

return 0;

}

CSE333, Spring 2024L12: C++ Constructor Insanity

Lecture Outline

❖ Constructors

❖ Copy Constructors

❖ Assignment

❖ Destructors

❖ An extended example

18

CSE333, Spring 2024L12: C++ Constructor Insanity

Assignment != Construction

❖ “=” is the assignment operator

▪ Assigns values to an existing, already constructed object

▪ How can you tell the difference between assignment

operator= and a copy constructor that uses =?

• Answer: are you creating/initializing a new object? If so, it’s a copy

constructor; if you are just updating an existing object it’s assignment

19

Point w; // default ctor

Point x(1, 2); // two-ints-argument ctor

Point y(x); // copy ctor

Point z = w; // copy ctor

y = x; // assignment operator

CSE333, Spring 2024L12: C++ Constructor Insanity

pollev.com/uwcse333

❖ How many of each method gets called?

▪ Default constructor

▪ Two-parameter constructor

▪ Copy constructor

▪ Assignment operator

20

class Triangle {

public:

Triangle(const Point& p1, const Point& p2, const Point& p3)

: p1_(p1.get_x(), p1.get_y()) {

// constructor body

}

private:

Point p1_, p2_, p3_;

const Point kOrigin;

}; // class Triangle

Having a constant as a member
variable is not a good design – better
to have only one copy of a constant!

CSE333, Spring 2024L12: C++ Constructor Insanity

Overloading the “=” Operator

❖ You can choose to define the “=” operator

▪ But there are some rules you should follow:

22

Point& Point::operator=(const Point& rhs) {

if (this != &rhs) { // (1) always check against this

x_ = rhs.x_;

y_ = rhs.y_;

}

return *this; // (2) always return *this from op=

}

Point c; // default constructor

a = b = c; // works because = return *this

a = (b = c); // equiv. to above (= is right-associative)

(a = b) = c; // "works" because = returns a non-const

CSE333, Spring 2024L12: C++ Constructor Insanity

Synthesized Assignment Operator

❖ If you don’t define the assignment operator, C++ will

synthesize one for you

▪ It will do a shallow copy of all of the fields (i.e. member variables)

of your class

▪ Sometimes the right thing; sometimes the wrong thing

23

#include "SimplePoint.h"

... // definitions for Distance() and SetLocation()

int main(int argc, char** argv) {

SimplePoint x;

SimplePoint y(x);

y = x; // invokes synthesized assignment operator

return 0;

}

CSE333, Spring 2024L12: C++ Constructor Insanity

Lecture Outline

❖ Constructors

❖ Copy Constructors

❖ Assignment

❖ Destructors

❖ An extended example

24

CSE333, Spring 2024L12: C++ Constructor Insanity

Destructors

❖ C++ has the notion of a destructor (dtor)

▪ Invoked automatically when a class instance is deleted, goes out

of scope, etc. (even via exceptions or other causes!)

▪ Place to put your cleanup code – free any dynamic storage or

other resources owned by the object

▪ Standard C++ idiom for managing dynamic resources

• Slogan: “Resource Acquisition Is Initialization” (RAII)

25

Point::~Point() { // destructor

// do any cleanup needed when a Point object goes away

// (nothing to do here since we have no dynamic resources)

}

CSE333, Spring 2024L12: C++ Constructor Insanity

pollev.com/uwcse333

❖ How many times does the destructor get invoked?

▪ Assume Point with everything defined (ctor, cctor, =, dtor)

▪ Assume no compiler optimizations

A. 1

B. 2

C. 3

D. 4

E. We’re lost…
26

Point PrintRad(Point& pt) {

Point origin(0, 0);

double r = origin.Distance(pt);

double theta = atan2(pt.get_y(), pt.get_x());

cout << "r = " << r << endl;

cout << "theta = " << theta << " rad" << endl;

return pt;

}

int main(int argc, char** argv) {

Point pt(3, 4);

PrintRad(pt);

return 0;

}

CSE333, Spring 2024L12: C++ Constructor Insanity

Lecture Outline

❖ Constructors

❖ Copy Constructors

❖ Assignment

❖ Destructors

❖ An extended example

27

CSE333, Spring 2024L12: C++ Constructor Insanity

Complex Example Walkthrough

See:

Complex.h

Complex.cc

testcomplex.cc

❖ (Some details like friend functions and namespaces are

explained in more detail next lecture, but ideas should

make sense from looking at the code and explanations in

C++ Primer.)

28

CSE333, Spring 2024L12: C++ Constructor Insanity

Extra Exercise #1

❖ Modify your Point3D class from Lec 10 Extra #1

▪ Disable the copy constructor and assignment operator

▪ Attempt to use copy & assignment in code and see what error the

compiler generates

▪ Write a CopyFrom() member function and try using it instead

• (See details about CopyFrom() in next lecture)

29

CSE333, Spring 2024L12: C++ Constructor Insanity

Extra Exercise #2

❖ Write a C++ class that:

▪ Is given the name of a file as a constructor argument

▪ Has a GetNextWord() method that returns the next

whitespace- or newline-separated word from the file as a copy of

a string object, or an empty string once you hit EOF

▪ Has a destructor that cleans up anything that needs cleaning up

30

