W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

C++ References, Const, Classes
CSE 333

Instructor: Hannah C. Tang

Teaching Assistants:

Deeksha Vatwani Hannah Jiang Jen Xu
Leanna Nguyen Nam Nguyen Sayuj Shahi
Tanay Vakharia Wei Wu Yiging Wang
Zohar Le

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

@ Poll Everywhere pollev.com/uwcse333

Note: Arrow points
to next instruction.

+~ Draw a box-and-arrow diagram illustrating the state of
memory at line 5

(int main (int argc, char** argv) {
int x =5, y = 10;
int* z = &x;

return EXIT SUCCESS; z

. J
pointer.cc

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

Administrivia

+ Sections this week are HUGE!
= POSIX1/O
= C++ references and const (today!)
= Possibly even C++ classes if we have time & &8 &

+» Homework 2 due next Wednesday (4/14)

= Note: 1ibhwl. a (yours or ours) needs to be in correct directory
(hwl/) for hw2 to build

= Use Ctrl-D (eof) on a line by itself to exit searchshell; must free all
allocated memory

= Test on directory of small self-made files where you can predict the data
structures and then check them

= Valgrind takes a long time on the full test_tree. Try using enron docs
only or other small test data directory for quick checks.

« What is an accommodation?
« Final exam details

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

Administrivia

+» What is an accommodation? To over-simplify:
= Something that's costing you several hours a day

" You didn't expect/plan for it, or is outside your control

" Don't suffer in silence!

+ Final exam details
= Take-home exam on Gradescope

"= Due on Wednesday @ 4:20pm (the end of our normal exam time)
and written to take ~2h of your time (excluding review)

" Guaranteed to be released no later than Monday @ 4:20

" Unlimited time, unlimited collaboration

« ... but not unlimited copying!

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

Administrivia

+ Final exam details ... and tips!

= Unlimited time, unlimited collaboration

- ... but not unlimited copying!

= |nterviews with former students show that this works well:
- Open the exam as soon as it's released; note which topics are covered
- Do a targeted review of those topics
- Meet with a study group, solve the questions together
3 DESTROY YOUR NOTES 3%

- Re-solve the questions individually (should be fast, thanks to your
individual + then group review), then submit t

—

- Enjoy your summer &9

radescope

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

Lecture Outline

+ C++ References
& constin C++

« C++ Classes Intro

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

Note: Arrow points

Pointers Reminder to next instruction.

+ A pointer is a variable containing an address

" Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main (int argc, char** argv) {
int x =5, y = 10; x 5
) nt* 7z = &X;

ARz

x += 1; Yy 10
z = &y;

~z +=1;

return EXIT SUCCESS;

. J
pointer.cc

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

Note: Arrow points

Pointers Reminder to next instruction.

+ A pointer is a variable containing an address

" Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main (int argc, char** argv) {
int x =5, y = 10; x 5
int* z = &x;

— tz += 1;
x += 1; Yy 10

z = &y;
~z +=1;

Z 0x7ﬂ3fma4

return EXIT SUCCESS;

. J
pointer.cc

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

Note: Arrow points

Pointers Reminder to next instruction.

+ A pointer is a variable containing an address

" Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main (int argc, char** argv) { h
int x =5, y = 10; % 6
int* z = &x;
*z += 1; // sets x to 6

— x += 1; - 10
z = &y;
*7 4= H \
return EXIT SUCCESS; z |0x780f..a4
}
~ J

pointer.cc
10

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

Note: Arrow points

Pointers Reminder to next instruction.

+ A pointer is a variable containing an address

" Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main (int argc, char** argv) { h
int x =5, y = 10; X 7
int* z = &x;
*z += 1, // sets x to 6
x += 1; // sets x (and *z) to 7 y 10

q 7 = &y;
~z +=1; -ﬁ\
return EXIT SUCCESS; z | 0x768%.a4
}
\ J

pointer.cc
11

CSE333, Spring 2024

YW UNIVERSITY of WASHINGTON

L11: References, Const, Classes

Pointers Reminder

Note: Arrow points
to next instruction.

+ A pointer is a variable containing an address

" Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

- : .
int main(int argc,

int x = 5, y =

int* z = &x;

ARz
x += 1;

z = &y;
— *z += 1;

char** argv)

10;
// sets x to 6
// sets x (and *z) to 7 y

// sets z to the address of y

return EXIT SUCCESS;

{

10

z Ox7f&fma0

J

pointer.cc
12

CSE333, Spring 2024

YW UNIVERSITY of WASHINGTON

Pointers Reminder

L11: References, Const, Classes

Note: Arrow points
to next instruction.

+ A pointer is a variable containing an address

" Modifying the pointer doesn’t mo

dify what it points to, but you

can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main (int argc, char** argv) {
int x = 5, y 10;

int* z = &x;

to 6
(and *z) to 7

// sets
// sets

ARz
X += 1;

X
X

to the addres
(and *z) to 1

z
Y

z +

// sets
// sets

*

&y;
17

=P return EXIT SUCCESS;
}

\.

~
X I
V4 11
s of y
1
z Ox7f&fma0
y,

pointer.cc
13

YW UNIVERSITY of WASHINGTON

References

« A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

L11: References, Const, Classes

" |ntroduced in C++ as part of the language

(int main (int argc, char** argv) { B
int x =5, y = 10;
int& z = Xx;
z += 1;
X += 1;
z += 1;
return EXIT SUCCESS;

}
. y,

reference.cc

CSE333, Spring 2024

14

YW UNIVERSITY of WASHINGTON

L11: References, Const, Classes

Comparing our Examples

« A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

" |ntroduced in C++ as part of the language

CSE333, Spring 2024

\.

- : .
int main(int argc,

char** argv) {
10;

Yy

i = 5,
int& z X,

|
|

1;
1;

Z
X

zZ += ;

return EXIT SUCCESS;
}

- ! .
int main(int argc,

\.

char** argv)
10;

I :5ry
int* 2 &X;

7=
X += 1;

G = sy; D
i

return EXIT SUCCESS;
}

{

15

YW UNIVERSITY of WASHINGTON L11: References, Const, Classes

References

« A reference is an alias for another variable

CSE333, Spring 2024

Note: Arrow points
to next instruction.

= Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

" |ntroduced in C++ as part of the language

(int main (int argc, char** argv) { B

int x =5, y = 10;
—) int& z = X;
z += 1;
X += 1;
z = y;
z += 1;
return EXIT SUCCESS;
}
. y,

V4 10

reference.cc

16

YW UNIVERSITY of WASHINGTON

L11: References, Const, Classes

References

« A reference is an alias for another variable
= Alias: another name that is bound to the aliased variable
- Mutating a reference is mutating the aliased variable

" |ntroduced in C++ as part of the language

— 7z += 1;
X += 1;

\.

(int main (int argc, char** argv) {
int x = 5,
inté& =z

= L0e

// binds the name "

return EXIT SUCCESS;

CSE333, Spring 2024

Note: Arrow points
to next instruction.

z" to x

10

reference.cc

YW UNIVERSITY of WASHINGTON

L11: References, Const, Classes

References

« A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

" |ntroduced in C++ as part of the language

(int main (int argc, char** argv) { B
int x =5, y = 10;
int& z = x; // binds the name "z" to x
z += 1; // sets z (and x) to 6

qxﬁ-: ;
z =Y
z += 1;
return EXIT SUCCESS;
}
_ y,

CSE333, Spring 2024

Note: Arrow points
to next instruction.

10

reference.cc

18

YW UNIVERSITY of WASHINGTON

References

« A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

L11: References, Const, Classes

" |ntroduced in C++ as part of the language

(int main (int argc, char** argv) { B
int x =5, y = 10;
int& z = x; // binds the name "z" to x
z += 1; // sets z (and x) to 6
x += 1; // sets x (and z) to 7

—) 7 = y;
z += 1;
return EXIT SUCCESS;
}
\ y

CSE333, Spring 2024

Note: Arrow points
to next instruction.

10

reference.cc

19

YW UNIVERSITY of WASHINGTON

References

« A reference is an alias for another variable

L11: References, Const, Classes

CSE333, Spring 2024

Note: Arrow points
to next instruction.

= Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

" |ntroduced in C++ as part of the language

- : .
int main(int argc,

char** argv)

{

int x = 5, y

int& z = x;
z += 1; //
X += 1; //
z =v; //
— 7z += 1;

return EXIT
}

\.

= L0e
// binds the name "z" to x

sets z (and x) to 6
sets x (and z) to 7

sets z (and x) to the value of y

SUCCESS;

X, Z 10

J

reference.cc

20

YW UNIVERSITY of WASHINGTON

L11: References, Const, Classes

CSE333, Spring 2024

References

« A reference is an alias for another variable

Note: Arrow points
to next instruction.

= Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

" |ntroduced in C++ as part of the language

(int main (int argc,
int x = 5, y =

int& z = x;
z += 1;
x += 1;
z =Y
z += 1;

// sets z (and x)
// sets z (and x)

char** argv)

10;
// binds the name

// sets z (and x) to
// sets x (and z) to

=P return EXIT SUCCESS;

}

\.

{

6
7

to the value of y
to 11

"Z" to X

11

J

reference.cc

21

YW UNIVERSITY of WASHINGTON

L11: References, Const, Classes

Pass-By-Reference

+» C++ allows you to use real pass-by-reference

" Client passes in an argument with normal syntax

CSE333, Spring 2024

Note: Arrow points
to next instruction.

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

(void swap (int& x, inté& y) { h main
int tmp = x;
_ .p (main) a 5

X Y
y = tmp;

}

int main (int argc, char** argv) { (main) b 10
int a = 5, b = 10;

) SwWap (a, b);

cout << "a: " <K<K a << "; b: " << b << endl;

\.

return EXIT_SUCCESS;
}

J

passbyreference.cc

22

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

Note: Arrow points

Pass-By-Reference to next instruction.

+» C++ allows you to use real pass-by-reference

" Client passes in an argument with normal syntax
- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

(void swap (inté& x, inté& y) { b main
=P nt tmp = x; .
- . (main) a

X = V; 5
y = tmp; (swap) x

}

int main (int argc, char** argv) { (main) b 10
int a = 5, b = 10; (swap) y
swap (a, b); swap
cout << "a: " <K<K a << "; b: " << b << endl;
return EXIT SUCCESS; (swap) tmp

\} J

passbyreference.cc 23

YW UNIVERSITY of WASHINGTON

Pass-By-Reference

L11: References, Const, Classes

CSE333, Spring 2024

Note: Arrow points
to next instruction.

+» C++ allows you to use real pass-by-reference

" Client passes in an argument with normal syntax

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

(void swap (inté& x, inté& y) { b main
int tmp = x; _
— X = V; (main) a 5
v = tmp; (swap) x
}
int main(int argc, char** argv) { (main) b 10
int a = 5, b = 10; (swap) y
swap (a, b); swap
cout << "a: " <K<K a << "; b: " << b << endl;
return EXIT SUCCESS; (swap) tmp | 5
\} J

passbyreference.cc

24

YW UNIVERSITY of WASHINGTON

Pass-By-Reference

L11: References, Const, Classes

CSE333, Spring 2024

Note: Arrow points
to next instruction.

+» C++ allows you to use real pass-by-reference

" Client passes in an argument with normal syntax

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

(void swap (inté& x, inté& y) { h main
int tmp = x; (main)
main) a
X = y; 10
m—p v = tmp; (swap) x
}
int main (int argc, char** argv) { (main) b 10
int a = 5, b = 10; (swap) y
swap (a, b); swap
cout << "a: " <K<K a << "; b: " << b << endl;
return EXIT SUCCESS; (swap) tmp | 5
\} J

passbyreference.cc

25

YW UNIVERSITY of WASHINGTON

L11: References, Const, Classes

CSE333, Spring 2024

Pass-By-Reference

Note: Arrow points
to next instruction.

+» C++ allows you to use real pass-by-reference

" Client passes in an argument with normal syntax

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

(void swap (inté& x, inté& y) { h main
int tmp = x; (main)
main) a
X = V; 10
vy = tmp; (swap) x
#
int main (int argc, char** argv) { (main) b 5
int a = 5, b = 10; (swap) ¥
swap (a, b); swap
cout << "a: " <K<K a << "; b: " << b << endl;
return EXIT SUCCESS; (swap) tmp | 5
k} J

passbyreference.cc

26

YW UNIVERSITY of WASHINGTON

L11: References, Const, Classes

Pass-By-Reference

+» C++ allows you to use real pass-by-reference

" Client passes in an argument with normal syntax

CSE333, Spring 2024

Note: Arrow points
to next instruction.

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

(void swap (inté& x, inté& y) { h main
int tmp = x;
_ .p (main) a 10

X Y
y = tmp;

}

int main (int argc, char** argv) { (main) b 9
int a = 5, b = 10;
swap (a, b);

ey cOUL << "a: " <K<K a << "y b " << b << endl;

\.

return EXIT_SUCCESS;
}

J

passbyreference.cc

27

YW UNIVERSITY of WASHINGTON

L11: References, Const, Classes

CSE333, Spring 2024

Pass-By-Reference: Mental Model

« A reference is an alias for another variable

= ..soit's asif noadditional space is allocated for it

= Unlike a pointer, which is a variable and does require space

(void swap (inté& x,
int tmp = x;
y = tmp;
}

int main(int argc,
int a = 5, b =

swap (a, b);

}

int& y) |

char** argv) {

.
4

return EXIT_SUCCESS;

Stack

main

swap tmp

Heap (malloc/free)

J

passbyreference.cc

Read/Write Segment

Read-Only Segment

28

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

@ Poll Everywhere pollev.com/uwcse333

+ At this point, which addresses are identical? In other words:
which pairs of names are aliases?

" ga == &b
" &a == &x
&y == &tmp

(void swap (inté& x, inté& y) { R
int tmp = x;
X = y;
y = tmp;

—tte
int main(int argc, char** argv) {

int a = 5, b = 10;
swap (a, b);
cout << "a: " <K<K a << "; b: " << b << endl;
return EXIT SUCCESS;

\} J

passbyreference.cc 29

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

Lecture Outline

«» C++ References
« constin C++

« C++ Classes Intro

31

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

const

%+ const: this cannot be changed/mutated
= Used much more in C++ thanin C

= Signal of intent to compiler; meaningless at hardware level

- Results in compile-time errors

rvoid BrokenPrintSquare (const int& 1) { N

i =1*i; // compiler error here!
std::cout << 1 << std::endl;
}

int main(int argc, char** argv) {
int J = 2;
BrokenPrintSquare (J) ;
return EXIT SUCCESS;

}

\. J

brokenpassbyrefconst.cc

32

YW UNIVERSITY of WASHINGTON

L11: References, Const, Classes

CSE333, Spring 2024

const and Pointers

+ Since it's a variable, a pointer can modify a program's

state by:

1) Changing the value of the pointer (what it points to)

2) Changing the thing the pointer points to (via dereference)

WA UNIVERSITY of WASHINGTON

Pointers Reminder

CSE333, Spring 2024

Note: Arrow points
to next instruction.

+ A pointer is a variable containing an address

= Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

= These work the same in C and C++

int x = 5, y = 10;

int* z = &x;

*z += 1; // sets x to 6
x += 1; // sets x (and

*z += 1; // sets y (and

m—pmp- return EXIT SUCCESS;
}

L.

{ - 5 =
int main(int argc, char** ar

gv) |

*z) to 7

z = &y; // sets z to the address of y
*z) to 11

J

pointer.cc

| = [7 |

y [11 |
N\

| - ‘ 0x7£0F..a0 I

13

33

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

const and Pointers

+ Since it's a variable, a pointer can modify a program's

0

state by:
1) Changing the value of the pointer (what it points to)
2) Changing the thing the pointer points to (via dereference)

const can be used to prevent either/both of these

behaviors!

= const nextto pointer name means you can’t change the value of
the pointer

" const next to data type pointed to means you can’t use this
pointer to change the thing being pointed to

= Tip: read variable declaration from right-to-left

34

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

const and Pointers

+ The syntax with pointers is confusing:

(int main (int argc, char** argv) { N
int x = 5; // int
const int y = 6; // (const 1int)
y++; // compiler error
const int *z = &y; // pointer to a (const int)
*z 4= 1; // compiler error
z++; // ok
int *const w = &Xx; // (const pointer) to a (variable int)
*wo+= 1; // ok
wt+; // compiler error
const int *const v = &x; // (const pointer) to a (const int)
*v o+= 1; // compiler error
v++; // compiler error
return EXIT SUCCRESS;
\} J

constmadness.cc ;¢

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

const Parameters

+ A const parameter cannot [void foo(const int* y) {
.. std::cout << *y << std::endl;
be mutated inside the }

fUﬂCtIOﬂ void bar (int* y) {
std::cout << *y << std::endl;
}

" Therefore it does not matter if

the argument can be mutated
int main(int argc, char** argv) {

or not
const int a = 10;
+ A non-const parameter int b = 20;
could be mutated inside the foo(sa); // OK
. foo (&b) ; // OK
function bar (&a) ; // not OK — error
= |t would be BAD if you could eeic () p /7 O
passita const var return EXIT SUCCESS;
L} J

= |llegal regardless of whether
or not the function actually

tries to change the var 36

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

@ Poll Everywhere pollev.com/uwcse333

+» What will happen when we try to compile and run?

A [#include <iostream> |
. void foo (int* const x, int& y, int z) {
B. OUtpUt “(2, 4, 3) *x +=1;
y *= 2;
C. Compiler error z -= 3;
)
about arguments
. . int main(int argc, char** argv) {
to foo (in main) const int a = 1;
int b = 2, ¢ = 3;
D. Compiler error foo(sa, b, ¢);
std::cout << "(" <K a <« ", "
about body of foo o Ty @2 B ©
<< ¢ << H)H
E. We're lost... << std::endl;

return 0;

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

Google Style Guide Convention

+ Use const references or call-by-value for input values

= Particularly for large values, use references (no copying)
+» Use pointers for output parameters

+ List input parameters first, then output parameters last

(void CalcArea(const int& width, const ints& height,
int* const
*area = width * height;

}
{

int main(int argc, char** argv)
int w = 10, h = 20, a;
CalcArea (w, h, &a);

return EXIT SUCCESS;

}

.

styleguide.cc
38

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

When to Use References?

+ A stylistic choice, not mandated by the C++ language

+ Google C++ style guide suggests:

" |Input parameters:

- Either use values (for primitive types like int or small
structs/objects)

- Or use const references (for complex struct/object instances)

" Qutput parameters:

- Use const pointers

— Unchangeable pointers referencing changeable data

39

YA UNIVERSITY of WASHINGTON

Lecture Outline

«» C++ References
& constin C++

« C++ Classes Intro

L11: References, Const, Classes

CSE333, Spring 2024

42

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

Classes

+ Class definition syntax (in a .h file):

(class Name {
public:
// public member declarations & definitions go here

private:
// private member delarations & definitions go here

}Y; // class Name
_ J

= Members can be functions (methods) or data (variables)

43

L11: References, Const, Classes

YW UNIVERSITY of WASHINGTON

Class Member Functions

« Class member functions can be:

1. defined within the class definition

- typically only used for trivial method definitions, like getters/setters

CSE333, Spring 2024

rclass Name |
retType MethodName (typel paraml, ..,
// body statements

}
}Y; // class Name

\

typeN paramN) {

p

2. declared within the class definition and then defined elsewhere

class Name
retType MethodName (typel paraml, ..,
}Y: // class Name

typeN paramN) ;

(retType Name: :MethodName (typel paraml,
// body statements

}

.

cee

typeN paramN)

{

~\

44

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

Class Organization (.h/.cc)

+ It’s a little more complex than in C when modularizing
with struct definition:
= (Class definition is part of interface and should go in . h file
- Private members still must be included in definition (!)E
ion . cc file

= Usually put member function definitions into compa
with implementation details

- Common exception: setter and getter methods

= These files can also include non-member functions that use the
class (more about this later)

+ Unlike Java, you can name files anything you want

® But normally Name.cc and Name.h forclass Name

45

YW UNIVERSITY of WASHINGTON

L11: References, Const, Classes

Class Definition (. h file)

CSE333, Spring 2024

private:
int x ; // data member
int y ; // data member
}; // class Point

#endif // POINT H_
_

Point.h
(#ifndef POINT H)
#define POINT H
class Point {
public:
Point (const int x, const int vy); // constructor
int get x() const { return x ; } // inline member function
int get y() const { return y ; } // inline member function
double Distance (const Pointé& p) const; // member function
void SetLocation (const int x, const int y); // member function

46

Class Member Definitions (. cc file)

Point.cc
(#include <cmath> E
#include "Point.h"
Point::Point (const int x, const int y) {
X = %5
this->y = y; // "this->" is optional unless name conflicts

}

double Point::Distance (const Point& p) const {
// We can access p’s x and y variables either through the
// get x(), get y() accessor functions or the x , y private
// member variables directly, since we’re in a member
// function of the same class.
double distance = (x - p.get x()) * (x_ - p.get x());
distance += (y_ - p.y) * (y_ - p.y)7
return sqrt(distance);

}

void Point::SetLocation(const int x, const int y) {
X = X;
Y = Y¥Ys

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

47

YW UNIVERSITY of WASHINGTON L11: References, Const, Classes

Class Usage (a different . cc file)

CSE333, Spring 2024

usepoint.cc

r#include <iostream>
#include "Point.h"

using namespace std;

int main(int argc, char** argv) {
Point pl (1, 2); // allocate a new Point on the Stack
Point p2(4, 6); // allocate a new Point on the Stack

cout << "pl is: (" << pl.get x() << ", ";
cout << pl.get y() << ")" << endl;

cout << "p2 is: (" << pZ2.get x() << ", ";
cout << p2.get_y () << ")" << endl;

cout << "dist : " << pl.Distance (p2) << endl;

return 0;

N\

48

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

Reading Assignment

+ Before next time, you must read the sections in C++
Primer covering class constructors, copy constructors,
assignment (operator=), and destructors

" |gnore “move semantics” for now
" The table of contents and index are your friends...

= Should we start class with a “quiz” next time?

- Topic: if we write Cx =y; or Cx(y); or x=y; or Cx; , which is called:
(i) constructor, (ii) copy constructor, (iii) assignment operator, ...

= Seriously — the next lecture will make a Jot more sense if you've
done some background reading ahead of time

- Don’t worry whether it all makes sense the first time you read it — it
won’t! The goal is to be aware of what the main issues are....

49

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

Extra Exercise #1

+ Write a C++ program that:
" Has a class representing a 3-dimensional point

"= Has the following methods:
- Return the inner product of two 3D points
- Return the distance between two 3D points

- Accessors and mutators for the x, y, and z coordinates

50

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Spring 2024

Extra Exercise #2

+ Write a C++ program that:

" Has a class representing a 3-dimensional box

- Use your Extra Exercise #1 class to store the coordinates of the
vertices that define the box

- Assume the box has right-angles only and its faces are parallel to the
axes, so you only need 2 vertices to define it

"= Has the following methods:
- Test if one box is inside another box
- Return the volume of a box
- Handles <<, =, and a copy constructor

- Uses const in all the right places

51

