
CSE333, Spring 2024L02: Memory, Arrays

Memory and Arrays
CSE 333

Instructor: Hannah C. Tang

Teaching Assistants:

Deeksha Vatwani Hannah Jiang Jen Xu

Leanna Nguyen Nam Nguyen Sayuj Shahi

Tanay Vakharia Wei Wu Yiqing Wang

Zohar Le

CSE333, Spring 2024L02: Memory, Arrays

Administrivia (1)

❖ Exercise 0 was due this morning

▪ Any significant problems getting it done?

• If unusual situation, please contact the staff with an email message so

we can help

▪ Sample solution will be posted late today and linked to calendar

• Requires CSE login; please do not distribute

– Non-CSE students should have received guest accounts for the quarter. Let

us know (email to cse333-staff) if you’re not set up, but we’ll probably

need for you to contact support[at]cs to get it resolved

❖ Exercise 1 out today, due Friday morning @ 11 am

2

CSE333, Spring 2024L02: Memory, Arrays

Administrivia (2)

❖ Reference system for grading is current CSE lab/attu/VM

▪ For both exercises and homework (project) code

▪ It’s your job to be sure your solution(s) work there

• Just because it works on ReallyCoolLinuxDistribution® doesn’t mean it

necessarily works on other Linux systems, including ours – there are

lots of subtle differences between Linux systems that can cause

problems

3

CSE333, Spring 2024L02: Memory, Arrays

Administrivia (3)

❖ Homework 0 gitlabs out now, spec later today

▪ Due Monday @ 10 pm

▪ Logistics and infrastructure for projects – should be quick

❖ Homework 1 will be posted and pushed to repos this

weekend – read and get started as soon as it’s out

▪ Linked list and hash table implementations in C

▪ Please read the spec and start looking at the code this weekend

• For large projects, you must pace yourself so if something baffling

happens, you can let it go for the day and come back to it tomorrow

4

CSE333, Spring 2024L02: Memory, Arrays

Lecture Outline

❖ C’s Memory Model (refresher)

❖ Pointers (refresher)

❖ Arrays

5

CSE333, Spring 2024L02: Memory, Arrays

OS and Processes

❖ The OS lets you run multiple applications at once

▪ An application runs within an OS “process”

▪ The OS timeslices each CPU between runnable processes

• This happens very quickly: ~100 times per second

Process 1 Process 2 Process N…

operating system

6

CSE333, Spring 2024L02: Memory, Arrays

Processes and Virtual Memory

❖ The OS gives each process the

illusion of its own private memory

▪ Called the process’ address space

▪ Contains the process’ virtual memory,

visible only to it (via translation)

▪ 264 bytes on a 64-bit machine

Virtual Memory

Contains code,
data, libraries,

stack, etc.

0xFF…FF

0x00…00
p

ro
ce

ss
’ a

d
d

re
ss

 s
p

ac
e

7

CSE333, Spring 2024L02: Memory, Arrays

Loading

❖ When the OS loads a program it:

1) Creates an address space

2) Inspects the executable file to see

what’s in it

3) (Lazily) copies regions of the file

into the right place in the address

space

4) Does any final linking, relocation, or

other needed preparation

9

CSE333, Spring 2024L02: Memory, Arrays

Loading

❖ When the OS loads a program it:

1) Creates an address space

2) Inspects the executable file to see

what’s in it

3) (Lazily) copies regions of the file

into the right place in the address

space

4) Does any final linking, relocation, or

other needed preparation

10

0xFF…FF

0x00…00

OS kernel [protected]

Stack

Heap

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

CSE333, Spring 2024L02: Memory, Arrays

Memory Management

❖ Local variables on the Stack

▪ Automatically allocated and freed via

calling conventions (push, pop, mov)

❖ Global and static variables in Data

▪ Statically alocated/freed when the

process starts/exits

❖ Dynamically-allocated data on the

Heap

▪ malloc() to request; must call free()

to release, otherwise memory leak

11

0xFF…FF

0x00…00

OS kernel [protected]

Stack

Heap

Static Data

Shared Libraries

Literals

Instructions

CSE333, Spring 2024L02: Memory, Arrays

Review: The Stack

❖ Used to store data associated with

function calls

▪ Compiler-inserted code manages stack

frames for you

❖ Stack frame (x86-64) includes:

▪ Address to return to

▪ Saved registers

• Based on calling conventions

▪ Local variables

▪ Argument build

• Only if > 6 used

12

Return Address

Saved Registers
+

Local Variables

Arguments 7+

Old %rbp

Arguments 7+

Caller
Frame

%rbp

%rsp

Callee
Frame

CSE333, Spring 2024L02: Memory, Arrays

Stack in Action

13

#include <stdint.h>

int f(int, int);

int g(int);

int main(int argc, char** argv) {

int n1 = f(3,-5);

n1 = g(n1);

}

int f(int p1, int p2) {

int x;

int a[3];

...

x = g(a[2]);

return x;

}

int g(int param) {

return param * 2;

}

OS kernel [protected]

Stack

Heap

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

stack.c

main
argc, argv, n1

f
p1, p2, x, a

g
param

Note: arrow points to next instruction to
be executed (like in gdb).

CSE333, Spring 2024L02: Memory, Arrays

pollev.com/uwcse333

❖ Draw what the stack looks like at this line

14

#include <stdint.h>

int f(int, int);

int g(int);

int main(int argc, char** argv) {

int n1 = f(3,-5);

n1 = g(n1);

}

int f(int p1, int p2) {

int x;

int a[3];

...

x = g(a[2]);

return x;

}

int g(int param) {

return param * 2;

}

OS kernel [protected]

Stack

Heap

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

main
argc, argv, n1

???

CSE333, Spring 2024L02: Memory, Arrays

Stack in Action

15

OS kernel [protected]

Stack

Heap

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

stack.c

main
argc, argv, n1

f
p1, p2, x, a

#include <stdint.h>

int f(int, int);

int g(int);

int main(int argc, char** argv) {

int n1 = f(3,-5);

n1 = g(n1);

}

int f(int p1, int p2) {

int x;

int a[3];

...

x = g(a[2]);

return x;

}

int g(int param) {

return param * 2;

}

Note: arrow points to next instruction to
be executed (like in gdb).

CSE333, Spring 2024L02: Memory, Arrays

Stack in Action

16

OS kernel [protected]

Stack

Heap

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

stack.c

main
argc, argv, n1

g
param

#include <stdint.h>

int f(int, int);

int g(int);

int main(int argc, char** argv) {

int n1 = f(3,-5);

n1 = g(n1);

}

int f(int p1, int p2) {

int x;

int a[3];

...

x = g(a[2]);

return x;

}

int g(int param) {

return param * 2;

}

Note: arrow points to next instruction to
be executed (like in gdb).

CSE333, Spring 2024L02: Memory, Arrays

Stack in Action

17

OS kernel [protected]

Stack

Heap

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

stack.c

main
argc, argv, n1

#include <stdint.h>

int f(int, int);

int g(int);

int main(int argc, char** argv) {

int n1 = f(3,-5);

n1 = g(n1);

}

int f(int p1, int p2) {

int x;

int a[3];

...

x = g(a[2]);

return x;

}

int g(int param) {

return param * 2;

}

Note: arrow points to next instruction to
be executed (like in gdb).

CSE333, Spring 2024L02: Memory, Arrays

Lecture Outline

❖ C’s Memory Model (refresher)

❖ Pointers (refresher)

❖ Arrays

18

CSE333, Spring 2024L02: Memory, Arrays

Pointers

❖ Variables that store addresses

▪ It points to somewhere in the process’ virtual address space

▪ &foo produces the virtual address of foo

❖ Generic definition: type* name; or type *name;

▪ Recommended: do not define multiple pointers on same line:

int *p1, p2; not the same as int *p1, *p2;

▪ Instead, use:

❖ Dereference a pointer using the unary * operator

▪ Access the memory referred to by a pointer

19

int *p1, p2; int *p1, *p2;

int *p1;

int *p2;

type* name; type *name;

CSE333, Spring 2024L02: Memory, Arrays

Pointer Example

20

#include <stdio.h>

#include <stdint.h>

int main(int argc, char** argv) {

int x = 351;

int* p; // p is a pointer to a int

p = &x; // p now contains the addr of x

printf("&x is %p\n", &x);

printf(" p is %p\n", p);

printf(" x is %d\n", x);

*p = 333; // change value of x

printf(" x is %d\n", x);

return 0;

}

pointy.c

CSE333, Spring 2024L02: Memory, Arrays

Something Curious

❖ What happens if we run pointy.c several times?

21

bash$ gcc –Wall –std=c11 –o pointy pointy.c

bash$./pointy

&x is 0x7ffff9e28524

p is 0x7ffff9e28524

x is 351

x is 333

bash$./pointy

&x is 0x7fffe847be34

p is 0x7fffe847be34

x is 351

x is 333

bash$./pointy

&x is 0x7fffe7b14644

p is 0x7fffe7b14644

x is 351

x is 333

bash$./pointy

&x is 0x7fffff0dfe54

p is 0x7fffff0dfe54

x is 351

x is 333

Run 2:Run 1:

Run 3: Run 4:

CSE333, Spring 2024L02: Memory, Arrays

Address Space Layout Randomization

❖ Linux uses address space layout

randomization (ASLR) for added

security

▪ Randomizes:

• Base of stack

• Shared library (mmap) location

▪ Makes Stack-based buffer overflow

attacks tougher

▪ Makes debugging tougher

▪ Can be disabled (gdb does this by

default); Google if curious

22

0xFF…FF

0x00…00

OS kernel [protected]

Stack

Heap

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

CSE333, Spring 2024L02: Memory, Arrays

Lecture Outline

❖ C’s Memory Model (refresher)

❖ Pointers (refresher)

❖ Arrays

23

CSE333, Spring 2024L02: Memory, Arrays

Arrays

❖ Definition: type name[size]

▪ Allocates size*sizeof(type) bytes of contiguous memory

▪ Normal usage is a compile-time constant for size

(e.g. int scores[175];)

▪ Initially, array values are “garbage” (i.e., uninitialized, unknown)

❖ Size of an array

▪ Not stored anywhere – array does not know its own size!

• sizeof(array) only works in variable scope of array definition

▪ Recent versions of C (but not C++) allowed variable-length arrays

• Uncommon; nowadays considered bad practice [we won’t use]

24

int n = 175;

int scores[n]; // OK in C99

type name[size]

CSE333, Spring 2024L02: Memory, Arrays

pollev.com/uwcse333

❖ The code snippets both use a variable-length array. What

will happen when we compile them (with C99 or later)?

A. Compiler Error Compiler Error

B. Compiler Error No Error

C. No Error Compiler Error

D. No Error No Error

E. Halp!
25

int m = 175;

int scores[m];

void foo(int n) {

...

}

int m = 175;

void foo(int n) {

int scores[n];

...

}

CSE333, Spring 2024L02: Memory, Arrays

Using Arrays

❖ Initialization: type name[size] = {val0,…,valN};

▪ {} initialization can only be used at time of definition

▪ If no size supplied, infers from length of array initializer

❖ Array name used as identifier for “collection of data”

▪ name[index] specifies an element of the array and can be

used as an assignment target or as a value in an expression

▪ Array name (by itself) evaluates to the address of the start of the

array

• Cannot be assigned to / changed

26

int primes[6] = {2, 3, 5, 6, 11, 13};

primes[3] = 7;

primes[100] = 0; // memory smash!

type name[size] = {val0,…,valN};

CSE333, Spring 2024L02: Memory, Arrays

Multi-dimensional Arrays

❖ Generic 2D format:
type name[rows][cols] = {{values},…,{values}};

▪ Still allocates a single, contiguous chunk of memory

▪ C stores arrays in row-major order

▪ 2-D arrays normally only useful if size known in advance.

Otherwise use dynamically-allocated data and pointers (later)

27

// a 2-row, 3-column array of doubles

double grid[2][3];

// a 3-row, 5-column array of ints

int matrix[3][5] = {

{0, 1, 2, 3, 4},

{0, 2, 4, 6, 8},

{1, 3, 5, 7, 9}

};

CSE333, Spring 2024L02: Memory, Arrays

Arrays as Parameters

❖ It’s tricky to use arrays as parameters

▪ What happens when you use an array name as an argument?

▪ Arrays do not know their own size

28

int sumAll(int a[]); // prototype

int main(int argc, char** argv) {

int numbers[] = {9, 8, 1, 9, 5};

int sum = sumAll(numbers);

return 0;

}

int sumAll(int a[]) {

int i, sum = 0;

for (i = 0; i < ...???

}

CSE333, Spring 2024L02: Memory, Arrays

Solution 1: Declare Array Size

❖ Problem: loss of generality/flexibility

29

int sumAll(int a[5]); // prototype

int main(int argc, char** argv) {

int numbers[] = {9, 8, 1, 9, 5};

int sum = sumAll(numbers);

printf("sum is: %d\n", sum);

return 0;

}

int sumAll(int a[5]) {

int i, sum = 0;

for (i = 0; i < 5; i++) {

sum += a[i];

}

return sum;

}

CSE333, Spring 2024L02: Memory, Arrays

Solution 2: Pass Size as Parameter

30

int sumAll(int a[], int size); // prototype

int main(int argc, char** argv) {

int numbers[] = {9, 8, 1, 9, 5};

int sum = sumAll(numbers, 5);

printf("sum is: %d\n", sum);

return 0;

}

int sumAll(int a[], int size) {

int i, sum = 0;

for (i = 0; i < size; i++) {

sum += a[i];

}

return sum;

}

arraysum.c

▪ Standard idiom in C programs

CSE333, Spring 2024L02: Memory, Arrays

pollev.com/uwcse333

❖ The code snippets both use a variable-length array. What

will happen when we compile them (with C99 or later)?

A. Compiler Error Compiler Error

B. Compiler Error No Error

C. No Error Compiler Error

D. No Error No Error

E. Halp!
31

int m = 175;

int scores[m];

void foo(int n) {

...

}

int m = 175;

void foo(int n) {

int scores[n];

...

}

CSE333, Spring 2024L02: Memory, Arrays

Administrivia (1)

❖ Office hours start today! See schedule on web calendar

❖ Discussion board: prefer public postings to private

▪ … unless it has specific code or other details that should not be

shared.

▪ Then the answers can help more people and we can reduce

duplicate effort to answer the same question(s) multiple times.

▪ Anonymous postings are fine if you’re feeling bashful. ☺

❖ Exercise 2 due Monday @ 11 am

❖ Homework 0 due Monday @ 10 pm

32

CSE333, Spring 2024L02: Memory, Arrays

Administrivia (2)

❖ You should be pretty far along in HW0 by now

▪ Went over gitlab setup in sections yesterday

▪ If you haven’t cloned your repo yet, do it now! If anything is wrong send

mail to cse333-staff[at]cs (now!) so we can fix accounts/repos before

the weekend

❖ HW1 will be pushed to repos over the weekend

▪ Linked list and hash table implementations in C

▪ Download starter code using git pull in your course repo

• Might have “merge conflict” if your local repo has unpushed changes

– Default git merge handling will almost certainly do the right thing

– To avoid, always do a git pull before any git commit or push

▪ Please read the assignment and start looking at the code now!

• For large projects, you want to pace yourself so if something baffling

happens, you can let it go for the day and come back to it tomorrow 33

CSE333, Spring 2024L02: Memory, Arrays

Administrivia (3)

❖ Exercise grading

▪ Score is an overall evaluation: 3/2/1/0 = superior / good /

marginal / not sufficient for credit

• We expect lots of 2’s and 3’s at first, more 3’s on later exercises

▪ Then additional ±0 rubric items as needed

• These are a quick way of communicating “why” – reasons for

deductions or comments about your solution

• Allows us to be more consistent in feedback

• The ±0 “score” is just because that’s how we have to use Gradescope

to handle feedback notes – it does not contribute to “the points”

34

CSE333, Spring 2024L02: Memory, Arrays

Lecture Outline

❖ Arrays (cont.)

❖ Pointers & Pointer Arithmetic

❖ Pointers as Parameters

❖ Pointers and Arrays

❖ Function Pointers

35

CSE333, Spring 2024L02: Memory, Arrays

Returning an Array

❖ Local variables, including arrays, are allocated on the

stack

▪ They “disappear” when a function returns!

▪ Can’t safely return local arrays from functions

• Can’t return an array as a return value – why not?

36

int* copyArray(int src[], int size) {

int i, dst[size]; // allowed in C99

for (i = 0; i < size; i++) {

dst[i] = src[i];

}

return dst; // no compiler error, but wrong!

} // returns ptr to abandoned memory!

buggy_copyarray.c

CSE333, Spring 2024L02: Memory, Arrays

Solution: Output Parameter

❖ Create the “returned” array in the caller

▪ Pass it as an output parameter to copyarray()

• A pointer parameter that allows the called function to store values

that the caller can use

▪ Works because arrays are “passed” as pointers

37

void copyArray(int src[], int dst[], int size) {

int i;

for (i = 0; i < size; i++) {

dst[i] = src[i];

}

}

copyarray.c

CSE333, Spring 2024L02: Memory, Arrays

Array Memory Diagram

38

int main(){

int original[] = {123, 351, 333};

int copy[3];

copyArray(original, copy, 3);

}

void copyArray(int src[], int dst[], int size) {

for (int i = 0; i < size; i++) {

dst[i] = src[i];

}

}

main()

original copy

123 351 333 ??? ??? ???

CSE333, Spring 2024L02: Memory, Arrays

Array Memory Diagram

39

int main(){

int original[] = {123, 351, 333};

int copy[3];

copyArray(original, copy, 3);

}

void copyArray(int src[], int dst[], int size) {

for (int i = 0; i < size; i++) {

dst[i] = src[i];

}

}

main()

copyArray()

original copy

123 351 333 ??? ??? ???

src dstsize 3

dst[i] is really
*(dst+i) . We
aren’t changing dst!

CSE333, Spring 2024L02: Memory, Arrays

Array Memory Diagram

40

int main(){

int original[] = {123, 351, 333};

int copy[3];

copyArray(original, copy, 3);

}

void copyArray(int src[], int dst[], int size) {

for (int i = 0; i < size; i++) {

dst[i] = src[i];

}

}

main()

copyArray()

original copy

123 351 333 123 351 333

src dstsize 3

dst[i] is really
*(dst+i) . We
aren’t changing dst!

CSE333, Spring 2024L02: Memory, Arrays

Output Parameters

❖ Output parameters are common in library functions

▪ long int strtol(char* str, char** endptr,

int base);

▪ int sscanf(char* str, char* format, ...);

41

int num, i;

char* pEnd;

char* str1 = "333 rocks"; // ptr to read-only const data

char str2[10];

// converts "333 rocks" into long -- pEnd is conversion end

num = (int) strtol(str1, &pEnd, 10);

// reads string into arguments based on format string

num = sscanf("3 blind mice", "%d %s", &i, str2);

outparam.c

CSE333, Spring 2024L02: Memory, Arrays

Parameters: reference vs. value

❖ There are two fundamental parameter-passing schemes in

programming languages

❖ Call-by-value

▪ Parameter is a local variable initialized with a copy of the calling

argument when the function is called; manipulating the

parameter only changes the copy, not the calling argument

▪ C, Java, C++ (most things)

❖ Call-by-reference

▪ Parameter is an alias for the supplied argument; manipulating the

parameter manipulates the calling argument

▪ C++ references (we’ll see these later)

42

CSE333, Spring 2024L02: Memory, Arrays

So what’s the story for arrays?

❖ Is it call-by-value or call-by-reference?

❖ Technical answer: a T[] array parameter is “promoted” to

a pointer of type T*, and the pointer is passed by value

▪ So it acts like a call-by-reference array (if callee changes the array

parameter elements it changes the caller’s array)

▪ But it’s really a call-by-value pointer (the callee can change the

pointer parameter to point to something else(!))

43

void copyArray(int src[], int dst[], int size) {

int i;

dst = src; // evil! dst now points to same array as src

for (i = 0; i < size; i++) {

dst[i] = src[i]; // copies source array to itself!

}

}

CSE333, Spring 2024L02: Memory, Arrays

Array Parameters – [] or * ?

❖ Array parameters are actually pointers to the beginning of

the array

▪ The [] syntax for parameter types is just for convenience

• Use whichever best helps the reader

44

void f(int a[]);

int main(...) {

int a[5];

...

f(a);

return EXIT_SUCCESS;

}

void f(int a[]) {...}

This code:

void f(int* a);

int main(...) {

int a[5];

...

f(&a[0]);

return EXIT_SUCCESS;

}

void f(int* a) {...}

Equivalent to:

CSE333, Spring 2024L02: Memory, Arrays

Extra Exercises

❖ Some lectures contain “Extra Exercise” slides

▪ Extra practice for you to do on your own without the pressure of

being graded

▪ You may use libraries and helper functions as needed

• Early ones may require reviewing 351 material or looking at

documentation for things we haven’t discussed in 333 yet

▪ Always good to provide test cases in main()

❖ Solutions for these exercises will be posted on the course

website

▪ You will get the most benefit from implementing your own

solution before looking at the provided one

45

CSE333, Spring 2024L02: Memory, Arrays

Extra Exercise #1

❖ Write a function that:

▪ Accepts an array of 32-bit unsigned integers and a length

▪ Reverses the elements of the array in place

▪ Returns nothing (void)

46

CSE333, Spring 2024L02: Memory, Arrays

Extra Exercise #2

❖ Write a function that:

▪ Accepts a string as a parameter

▪ Returns:

• The first white-space separated word in the string as a newly-

allocated string

• AND the size of that word

▪ (probably need to wait until we look at malloc/free later)

47

