
CSE 333 Section 7 SOLUTIONS - Memory Diagram Review,
Smart Pointers
Welcome back to section! We’re glad that you’re here :)

Memory Diagram Review
Memory diagrams, sometimes called box-and-arrow diagrams, visually describe the state of the
program.

A good memory diagram will have:
● An area for the stack and (if dynamic memory) heap, ideally both labeled
● Be sure to label stackframes!
● Variables will be located in their stack frames or the heap. Every variable will have its own

box, labeled with its name. Its value is drawn within the box.
● If a struct/class's fields are clear from context, there's no need to label them; if it's unclear,

then label

Exercise 1
Recall the linked list from ex9.5. For convenience, we've repeated the relevant parts of ll.h and
main.c here. Additionally, we've given a sample (non-buggy!) implementation of ll.c.

// ll.h

typedef struct llnode {
struct llnode *next;
int payload;

} LinkedListNode;

typedef struct ll {
LinkedListNode *head;
int size;

} LinkedList;

typedef void(*PayloadFn)(int *payload);

LinkedList *LinkedList_Allocate();
void LinkedList_Push(LinkedList *l, int i);
void LinkedList_Iterate(LinkedList *l, PayloadFn fn);
void LinkedList_Deallocate(LinkedList *l);

// main.c

void print_payload(int *i) {
fprintf(stderr, "%d ", *i);

}

int main(void) {
int i;
LinkedList *ll = LinkedList_Allocate();

printf("Please enter a list of integers you'd like reversed: ");
while (1) {

if (scanf("%d", &i) != 1) break;
LinkedList_Push(ll, i);

}

printf("\nYour reversed numbers are:\n");
LinkedList_Iterate(ll, &print_payload);
printf("\n");

LinkedList_Deallocate(ll);
return 0;

}

// ll.c

LinkedList *LinkedList_Allocate() {
LinkedList *l = (LinkedList *)malloc(sizeof(LinkedList));
l->head = NULL;
l->size = 0;
return l;

}

void LinkedList_Push(LinkedList *l, int i) {
LinkedListNode *n =

(LinkedListNode*)malloc(sizeof(LinkedListNode));
n->next = l->head;
n->payload = i;

l->head = n;
l->size++;

}

void LinkedList_Iterate(LinkedList *l, PayloadFn fn) {
LinkedListNode *n = l->head;
while (n != NULL) {

fn(&(n->payload));
n = n->next;

}
}

void LinkedList_Deallocate(LinkedList *l) {
LinkedListNode *n = l->head;
while (n != NULL) {

LinkedListNode *nxt = n->next;
free(n);
n = nxt;

}
}

Assume that you've set a breakpoint at the first call to print_payload(). Draw the memory
diagram at that breakpoint, assuming that the program's input was "10 20 30".

Things to note about this diagram:
● The stack is currently 3 frames deep, so we've drawn all 3 and labeled each one
● The linked list and all its nodes were dynamically allocated, so they're drawn in the heap's

labeled area
● It's clear from context that the LinkedListNode struct consists of an integer and a

pointer, so we don't need to label each field. But it's ok to label them if the fields are
unclear to you

● Each variable, even if it's a copy of another variable (eg, LinkedList_Iterate's l and
main's ll), is represented in the diagram

● Each variable has a box containing its value and a label with its name
● We haven't discussed how to draw function pointers, so it's ok to have different-looking

answers. The important idea is that a function pointer is an address, and therefore it
requires a variable to store that value

Smart Pointers!
std::unique_ptr – Uniquely manages a raw pointer by disabling cctor and op=

● Used when you want to declare unique ownership of a pointer
std::shared_ptr – Uses reference counting to determine when to delete a managed raw
pointer

● Use when multiple pointers need to “own” the heap resource simultaneously
std::weak_ptr – Used in conjunction with shared_ptr but does not contribute to reference
count

Exercise 2

Consider the IntNode struct below. Convert the IntNode struct to be “smart”.
Should each field be a unique_ptr, shared_ptr, or weak_ptr? Why?

#include <memory>
using std::shared_ptr;
using std::unique_ptr;
using std::weak_ptr;

template <typename T>
struct IntNode {

IntNode(int* val, IntNode* node): value(unique_ptr<int>(val)),
next(shared_ptr<IntNode>(node)){}

~IntNode() { delete value; }
unique_ptr<int> value;
shared_ptr<IntNode> next;

};

After the conversion, draw a memory diagram with the reference count for blocks of memory.

#include <iostream>

using std::cout;
using std::endl;

int main() {
shared_ptr<IntNode> head =

shared_ptr<IntNode>(new IntNode(new int(351), nullptr));
head->next = shared_ptr<IntNode>(new IntNode(new int(333),

nullptr));
shared_ptr<IntNode> iter = head;
while (iter != nullptr) {

cout << *(iter->value) << endl;
iter = iter->next;

}
}

This memory diagram is just before we exit the while loop.

