
CSE 333 Section 7
Memory Diagram Review &
Smart Pointers

1

Logistics

● HW3:

○ Due 11/19 (Tuesday) @ 10 PM

● Exercise 13:
○ Due 11/08 (Tomorrow!) @ 10 AM

2

Memory Diagram Review

3

Memory Diagrams /
Box-and-Arrow Diagrams

Memory diagrams, sometimes called
box-and-arrow diagrams, visually
describe the state of the program

4

Stack

Heap

Memory Diagrams /
Box-and-Arrow Diagrams
A good memory diagram will have:

● An area for the stack and (if dynamic
memory) heap, ideally both labeled

○ Be sure to label stackframes!

● Variables will be located in their stack frames
or the heap. Every variable will have its own
box, labeled with its name. Its value is drawn
within the box.

● If a struct/class's fields are clear from
context, there's no need to label them; if it's
unclear, then label

5

Stack

Heap

Exercise 1

Assume that you've set a
breakpoint at the first call to

print_payload(). Draw the
memory diagram at that

breakpoint, assuming that the
program's input was "10 20 30".

7

int main(void) {

 int i;

 LinkedList *ll = LinkedList_Allocate();

 printf("Please enter a list of integers you'd like reversed: ");

 while (1) {

 if (scanf("%d", &i) != 1) break;

 LinkedList_Push(ll, i);

 }

 printf("\nYour reversed numbers are:\n");

 LinkedList_Iterate(ll, &print_payload);

 printf("\n");

 LinkedList_Deallocate(ll);

 return 0;

}

8

Exercise 1

9

Things to note about this diagram:

● The stack is currently 3 frames deep, so we've drawn all 3 and labeled each one
● The linked list was dynamically allocated, so it's drawn in a labeled area for the

heap
● It's clear from context that the LinkedListNode struct consists of an integer and

a pointer, so we don't have to label each field (but it's also ok to do so)!
● Each variable, even if it's a copy, has a box containing its value and a label with

its name.
● We haven't discussed how to draw function pointers, so it's ok to have

different-looking answers. The important idea is that a function pointer is an
address, and therefore it requires a variable to store that value.

Exercise 1

Smart Pointers!

10

Review: Smart Pointers
● std::unique_ptr (Documentation) – Uniquely manages a raw

pointer

○ Used when you want to declare unique ownership of a pointer

○ Disabled cctor and op=

● std::shared_ptr (Documentation) – Uses reference counting to
determine when to delete a managed raw pointer
○ std::weak_ptr (Documentation) – Used in conjunction with

shared_ptr but does not contribute to reference count

https://www.cplusplus.com/reference/memory/unique_ptr/
https://www.cplusplus.com/reference/memory/shared_ptr/
https://www.cplusplus.com/reference/memory/weak_ptr/

Using Smart Pointers
● Treat a smart pointer like a normal (raw) pointer, except now you won’t

have to use delete to deallocate memory!

○ You can use *, ->, [] as you would with a raw pointer!

● Initialize a smart pointer by passing in a pointer to heap memory:

unique_ptr<int[]> u_ptr(new int[3]);

○ For shared_ptr and weak_ptr, you can use cctor and op= to get a copy

shared_ptr<int[]> s_ptr(another_shared_ptr);

Using Smart Pointers cont.
● Want to transfer ownership from one unique_ptr to another ?

unique_ptr<T> V = std::move(unique_ptr<T> U);

● Want to get the reference count of a shared_ptr?
int count = s.use_count();

● Want to convert your weak_ptr to a shared_ptr?
std::shared_ptr s = w.lock();

Exercise 2

Change the following code to use smart pointers. Should each field be a unique, shared or
weak pointer?

Exercise 2

#include <memory>
using std::shared_ptr;
using std::unique_ptr;
using std::weak_ptr;

struct IntNode {
 IntNode(int* val, IntNode* node): value(val), next(node) {}

 ~IntNode() { delete value; }

 int* value;
 IntNode* next;
};

Exercise 2
#include <memory>
using std::shared_ptr;
using std::unique_ptr;
using std::weak_ptr;

struct IntNode {
 IntNode(int* val, IntNode* node) :
 value(unique_ptr<int>(val)), next(shared_ptr<IntNode>(node)) {}

 ~IntNode() { delete value; }

 unique_ptr<int> value;
 shared_ptr<IntNode> next;
};

Exercise 2
#include <memory>
using std::shared_ptr;
using std::unique_ptr;
using std::weak_ptr;

struct IntNode {
 IntNode(int* val, IntNode* node) :
 value(unique_ptr<int>(val)), next(shared_ptr<IntNode>(node)) {}

 ~IntNode() { delete value; }

 unique_ptr<int> value;
 shared_ptr<IntNode> next;
};

Example: Client Code

#include <iostream>

using std::cout;
using std::endl;
using std::shared_ptr;

int main() {
 shared_ptr<IntNode> head(new IntNode(new int(351), nullptr));
 head->next = shared_ptr<IntNode>(new IntNode(new int(333), nullptr));
 shared_ptr<IntNode> iter = head;
 while (iter != nullptr) {
 cout << *(iter->value) << endl;
 iter = iter->next;
 }
}

head
value

next

value

next

351

333

Ref count: 1

Ref count: 1

iter

Ref count: 2Ref count: 0

Ref count: 0Ref count: 2

Stack Heap

Example: Client Code

#include <iostream>

using std::cout;
using std::endl;
using std::shared_ptr;

int main() {
 shared_ptr<IntNode> head(new IntNode(new int(351), nullptr));
 head->next = shared_ptr<IntNode>(new IntNode(new int(333), nullptr));
 shared_ptr<IntNode> iter = head;
 while (iter != nullptr) {
 cout << *(iter->value) << endl;
 iter = iter->next;
 }
}

Nothing left on the heap!

