
 CSE 333 Section 5 - C++ Intro, Classes, and Dynamic Memory
 Welcome back to section! We’re glad that you’re here :)

 References
 References create aliases that we can bind to existing variables. References are not separate
 variables and cannot be reassigned after they are initialized. In C++, you define a reference
 using: type& name = var . The ‘ & ’ is similar to the ‘ * ’ in a pointer definition in that it modifies
 the type and the space can come before or after it.

 Const
 Const makes a variable unchangeable after initialization, and is enforced at compile time.

 const int x = 5; // Can’t assign to x
 const int* x_ptr = &x; // Can assign to x_ptr, but not *x_ptr
 int* const y_ptr = &y; // Can assign to *y_ptr, but not y_ptr
 const int* const z_ptr = &z; // Can’t assign to *z_ptr or z_ptr

 Class objects can be declared const too - a const class object can only call member functions
 that have been declared as const, which are not allowed to modify the object instance it is being
 called on.

 Exercises :
 1) Consider the following functions and variable declarations.

 a) Draw a memory diagram for the variables declared in main . It might be helpful to
 distinguish variables that are constant in your memory diagram.

 int main(int argc, char** argv) {
 int x = 5;
 int& x_ref = x;
 int* x_ptr = &x;
 const int& ro_x_ref = x;
 const int* ro_ptr1 = &x;
 int* const ro_ptr2 = &x;
 // ...

 }

 b) When would you prefer void Func(int &arg); to void Func(int *arg); ?
 Expand on this distinction for other types besides int .

 1

 c) If we have functions void Foo(const int& arg); and void Bar(int& arg); ,
 what does the compiler think about the following lines of code:

 Bar(x_ref);
 Bar(ro_x_ref);
 Foo(x_ref);

 d) How about this code?

 ro_ptr1 = (int*) 0xDEADBEEF;
 x_ptr = &ro_x_ref;
 ro_ptr2 = ro_ptr2 + 2;
 *ro_ptr1 = *ro_ptr1 + 1;

 2

 2) Refer to the following poorly-written class declaration.

 class MultChoice {
 public:
 MultChoice(int q, char resp) : q_(q), resp_(resp) { } // 2-arg

 ctor
 int get_q() const { return q_; }
 char get_resp() { return resp_; }
 bool Compare(MultChoice &mc) const; // do these MultChoice's

 match?

 private:
 int q_; // question number
 char resp_; // response: 'A','B','C','D', or 'E'

 }; // class MultChoice

 a) Indicate (Y / N) which lines of the snippets of code below (if any) would cause compiler
 errors:

 Code Snippets Error? Code Snippets Error?

 const MultChoice m1(1,'A');
 MultChoice m2(2,'B');
 cout << m1. get_resp ();
 cout << m2. get_q ();

 const MultChoice m1(1,'A');
 MultChoice m2(2,'B');
 m1. Compare (m2);
 m2. Compare (m1);

 b) What would you change about the class declaration to make it better? Feel free to mark
 directly on the class declaration above.

 3

 Member, Non-Member, and Friends, Oh My!

 Member Non-member

 Access to Private
 Members:

 Function call (Func):

 Operator call (*):

 When preferred:

 Constructors, Destructors, what is going on?
 - Constructor : Can define any number as long as they have different parameters.

 Constructs a new instance of the class. The default constructor takes no arguments.
 - Copy Constructor : Creates a new instance of the class based on another instance (it’s

 the constructor that takes a reference to an object of the same class). Automatically
 invoked when passing or returning a non-reference object to/from a function.

 - Assignment Operator : Assigns the values of the right-hand-expression to the
 left-hand-side instance.

 - Destructor : Cleans up the class instance, e.g. , free dynamically allocated memory used
 by this class instance.

 What happens if you don’t define a copy constructor? Or an assignment operator? Or a
 destructor? Why might this be bad?

 How can you disable the copy constructor/assignment operator/destructor?

 4

 Exercise 3) Order the execution of the following program:

 class Bar {
 public :
 Bar() : num_(0) { } // 0-arg ctor
 Bar(int num) : num_(num) { } // 1-arg ctor
 Bar(const Bar& other) : num_(other.num_) { } // cctor
 ~Bar() { } // dtor
 Bar& operator =(const Bar& other) = default; // op=
 int get_num() const { return num_; } // getter

 private :
 int num_;

 };

 class Foo {
 public :
 Foo() : bar_(5) { } // 0-arg ctor
 Foo(const Bar& b) { bar_ = b; } // 1-arg ctor
 ~Foo() { } // dtor

 private :
 Bar bar_;

 };

 int main() {
 Bar b1(3);
 Bar b2 = b1;
 Foo f1;
 Foo f2(b2);
 return EXIT_SUCCESS;

 }

 5

 Dynamically-Allocated Memory: New and Delete
 In C++, memory can be heap-allocated using the keywords “ new ” and “ delete ”. You can think
 of these like malloc() and free() with some key differences:

 ● Unlike malloc() and free() , new and delete are operators, not functions.
 ● The implementation of allocating heap space may vary between malloc and new .

 New: Allocates the type on the heap, calling the specified constructor if it is a class type.
 Syntax for arrays is “ new type[num] ”. Returns a pointer to the type.

 Delete: Deallocates the type from the heap, calling the destructor if it is a class type. For
 anything you called “ new ” on, you should at some point call “ delete ” to clean it up. Syntax for
 arrays is “ delete[] name ”.

 Just like baking soda and vinegar, you shouldn’t mix malloc / free with new / delete .

 Exercise 4) Memory Leaks

 class Leaky {
 public :
 Leaky() { x_ = new int (5); }
 private :
 int * x_;

 };

 int main(int argc, char ** argv) {
 Leaky** dbl_ptr = new Leaky*;
 Leaky* lky_ptr = new Leaky();
 *dbl_ptr = lky_ptr;
 delete dbl_ptr;
 return EXIT_SUCCESS;

 }

 What is leaked by this program? How would you fix the memory leaks?

 6

 Exercise 5) Identify the memory error with the following code.

 class BadCopy {
 public :
 BadCopy() { arr_ = new int[5]; }
 ~BadCopy() { delete [] arr_; }
 private :
 int * arr_;

 };

 int main(int argc, char ** argv) {
 BadCopy* bc1 = new BadCopy;
 BadCopy* bc2 = new BadCopy(*bc1); // cctor

 delete bc1;
 delete bc2;

 return EXIT_SUCCESS;
 }

 Hint : Draw a memory diagram. What happens when bc1 gets deleted?

 7

