CSE 333 Section 5 - C++ Intro, Classes, and Dynamic Memory

Welcome back to section! We're glad that you'’re here :)

References

References create aliases that we can bind to existing variables. References are not separate
variables and cannot be reassigned after they are initialized. In C++, you define a reference
using: type& name = var. The ‘&’ is similar to the ‘*’ in a pointer definition in that it modifies
the type and the space can come before or after it.

Const
Const makes a variable unchangeable after initialization, and is enforced at compile time.

const int x = 5; // Can’t assign to x

const intx x_ptr = &x; // Can assign to x_ptr, but not *x_ptr
intx const y_ptr = &y; // Can assign to xy_ptr, but not y_ptr
const int* const z_ptr = &z; // Can’t assign to *z_ptr or z_ptr

Class objects can be declared const too - a const class object can only call member functions
that have been declared as const, which are not allowed to modify the object instance it is being
called on.

Exercises:
1) Consider the following functions and variable declarations.
a) Draw a memory diagram for the variables declared in ma-in. It might be helpful to
distinguish variables that are constant in your memory diagram.

int main(int argc, charxx argv) {
int x = 5;
int& x_ref = x;
intx x_ptr = &x;
const int& ro_x_ref = x;
const int* ro_ptrl = &x;
int* const ro_ptr2 = &x;

/7

b) When would you prefer void Func(int &arg); tovoid Func(int *arg);?
Expand on this distinction for other types besides int.

c) If we have functions void Foo(const int& arg); and void Bar(int& arg);,
what does the compiler think about the following lines of code:

Bar(x_ref);
Bar(ro_x_ref);
Foo(x_ref);

d) How about this code?

ro_ptrl = (intx) OxDEADBEEF;
X_ptr = &ro_x_ref;

ro_ptr2 = ro_ptr2 + 2;
*ro_ptrl = *ro_ptrl + 1;

2) Refer to the following poorly-written class declaration.

class MultChoice {

public:

MultChoice(int g, char resp) : q_(q), resp_(resp) { } // 2-arg
ctor

int get_q() const { return q_; }

char get_resp() { return resp_; }

bool Compare(MultChoice &mc) const; // do these MultChoice's
match?

private:

int q_; // question number

char resp_; // response: 'A','B','C','D', or 'E'
}s // class MultChoice

a) Indicate (Y/N) which lines of the snippets of code below (if any) would cause compiler

errors:
Code Snippets Error? Code Snippets Error?
const MultChoice ml(1,'A"); const MultChoice ml (1, 'A");
MultChoice m2 (2, 'B'); MultChoice m2(2,'B');
cout << ml.get_resp(); ml.Compare (m2) ;
cout << mZ.get q(); m2 .Compare (ml) ;

b) What would you change about the class declaration to make it better? Feel free to mark
directly on the class declaration above.

Member, Non-Member, and Friends, Oh My!

Member Non-member

Access to Private
Members:

Function call (Func):

Operator call (*):

When preferred:

Constructors, Destructors, what is going on?

- Constructor: Can define any number as long as they have different parameters.
Constructs a new instance of the class. The default constructor takes no arguments.

- Copy Constructor: Creates a new instance of the class based on another instance (it's
the constructor that takes a reference to an object of the same class). Automatically
invoked when passing or returning a non-reference object to/from a function.

- Assignment Operator: Assigns the values of the right-hand-expression to the
left-hand-side instance.

- Destructor: Cleans up the class instance, e.g., free dynamically allocated memory used
by this class instance.

What happens if you don’t define a copy constructor? Or an assignment operator? Or a
destructor? Why might this be bad?

How can you disable the copy constructor/assignment operator/destructor?

Exercise 3) Order the execution of the following program:

class Bar {
public:
Bar() : num_(0) { } // 0-arg ctor
Bar(int num) : num_(num) { } // l-arg ctor
Bar(const Bar& other) : num_(other.num_) { } // cctor
~Bar() { } // dtor
Bar& operator=(const Bar& other) = default; // op=
int get_num() const { return num_; } // getter

private:
int num_;

15

class Foo {
public:
Foo() : bar_(5) { } // 0-arg ctor
Foo(const Bar& b) { bar_ = b; } // 1-arg ctor
~Foo() { } // dtor

private:
Bar bar_;

+s

int main() {

Bar b1(3); Number the following starting with 1.
Bar b2 = bl;

Foo f1; Each method may be called more than
Foo f2(b2); once (i.e., you can put multiple numbers
return EXIT_SUCCESS; on the same line).

Bar 0-arg ctor

Bar l1-arg ctor

Bar cctor

________ Bar op=

Foo O-arg ctor

Foo 1-arg ctor

Foo dtor

Bar dtor

Dynamically-Allocated Memory: New and Delete
In C++, memory can be heap-allocated using the keywords “new” and “delete”. You can think
of these like malloc () and free () with some key differences:

e Unlikemalloc () and free (), new and delete are operators, not functions.

e The implementation of allocating heap space may vary between malloc and new.

New: Allocates the type on the heap, calling the specified constructor if it is a class type.
Syntax for arrays is “new type [num]”. Returns a pointer to the type.

Delete: Deallocates the type from the heap, calling the destructor if it is a class type. For
anything you called “new” on, you should at some point call “delete” to clean it up. Syntax for
arrays is “delete[] name”.

Just like baking soda and vinegar, you shouldn’t mix malloc/free with new/delete.
Exercise 4) Memory Leaks

class Leaky {
public:
Leaky () { x_ = new int(5); }
private:
intx x_;

s

int main(int argc, char*x argv) {
Leakyx* dbl_ptr = new Leakyx;
Leaky* 1lky_ptr = new Leaky();
*dbl_ptr = lky_ptr;
delete dbl_ptr;
return EXIT_SUCCESS;

}

What is leaked by this program? How would you fix the memory leaks?

Exercise 5) Identify the memory error with the following code.

class BadCopy {

public:
BadCopy() { arr_ = new int[5]; }
~BadCopy () { delete [] arr_; }
private:
intx arr_;

+s

int main(int argc, charx*x argv) {
BadCopy* bcl = new BadCopy;
BadCopy* bc2 new BadCopy(*bcl); // cctor

delete bcl;
delete bc2;

return EXIT_SUCCESS;
}

Hint: Draw a memory diagram. What happens when bc1 gets deleted?

