CSE 333 Section 5 - C++ Classes, Dynamic Memory

Welcome back to section! We're glad that you're here :)

References

References create aliases that we can bind to existing variables. References are not separate
variables and cannot be reassigned after they are initialized. In C++, you define a reference
using: type& name = var. The ‘&’ is similar to the ‘*’ in a pointer definition in that it modifies
the type and the space can come before or after it.

Const
Const makes a variable unchangeable after initialization, and is enforced at compile time.

const int x = 5; // Can’t assign to x

const intx x_ptr = &x; // Can assign to x_ptr, but not *x_ptr
int* const y_ptr = &y; // Can assign to xy_ptr, but not y_ptr
const int* const z_ptr = &z; // Can’t assign to *z_ptr or z_ptr

Class objects can be declared const too - a const class object can only call member functions
that have been declared as const, which are not allowed to modify the object instance it is being
called on.

Exercises:
1) Consider the following functions and variable declarations.
a) Draw a memory diagram for the variables declared in main. It might be helpful to
distinguish variables that are constant in your memory diagram.

int main(int argc, charxx argv) {
int x = 5;
int& x_ref = x;
intx x_ptr = &x;
const int& ro_x_ref = x;
const intx ro_ptrl = &x;
int* const ro_ptr2 = &x;

//
}
X, x_ref
5
ro_x_ref
- R \
ro_ptrl Ox7fff... Ox7fff...
X_ptr

ro ptr2 1 Ox7fff.. :
L

When would you prefer void Func(int &arg); tovoid Func(int *arg);?
Expand on this distinction for other types besides int.

When you don’t want to deal with pointer semantics, use references

When you don’t want to copy stuff over (doesn’t create a copy, especially for parameters
and/or return values), use references

Style wise, we want to use references for input parameters and pointers for output
parameters, with the output parameters declared last

If we have functions void Foo(const int& arg); and void Bar(int& arg);,
what does the compiler think about the following lines of code:

bar (x_ref); // No issues
bar (ro x ref); // Error - ro x ref is const
foo(x_ref); // No issues

How about this code?

ro ptrl = (int*) OxDEADBEEF; // No issues
x ptr = &ro x ref; // Error - ro x ref is const
ro ptr2 = ro ptr2 + 2; // Error - ro ptr2 is const

*ro ptrl = *ro ptrl + 1; // Error - (*ro ptrl) is const

2) Refer to the following poorly-written class declaration.

class MultChoice {

public:

MultChoice(int g, char resp) : q_(q), resp_(resp) { } // 2-arg
ctor

int get_q() const { return q_; }

char get_resp() { return resp_; }

bool Compare(MultChoice &mc) const; // do these MultChoice's
match?

private:

int q_; // question number

char resp_; // response: 'A','B','C','D', or 'E'
}; // class MultChoice

a) Indicate (Y/N) which lines of the snippets of code below (if any) would cause compiler
errors:

Code Snippets Error? Code Snippets Error?

const MultChoice ml(1,'A");
MultChoice m2 (2, 'B'");

cout << ml.get_resp();

cout << mZ.get q();

const MultChoice ml (1, 'A");
MultChoice m2 (2, 'B");
ml.Compare (m2) ;

m2 .Compare (ml) ;

Z2<ZZzZ
<Z2ZZ2Z

b) What would you change about the class declaration to make it better? Feel free to mark
directly on the class declaration above.

Many possibilities. Importantly, make get_resp() const and make the parameter to
Compare() const. Stylistically, it makes sense to add a setter method and default
constructor. Could also optionally disable copy constructor and assignment operator.

Member, Non-Member, and Friends, Oh My!

Member Non-member
Access to Private Always e Through getters and
Members: setters

e Through friend keyword
(do not use unless needed)

Function call (Func): objl.Func(obj2) Func(objl, obj2)
Operator call (*): objl x obj2 objl x obj2
When preferred: ° Functions that mutate e Non-mutating functions
the object e Commutative functions
e “Core”class e When the class must be on

functionality the right-hand side

Constructors, Destructors, what is going on?

- Constructor: Can define any number as long as they have different parameters.
Constructs a new instance of the class. The default constructor takes no arguments.

- Copy Constructor: Creates a new instance of the class based on another instance (it's
the constructor that takes a reference to an object of the same class). Automatically
invoked when passing or returning a non-reference object to/from a function.

- Assignment Operator: Assigns the values of the right-hand-expression to the
left-hand-side instance.

- Destructor. Cleans up the class instance, i.e. free dynamically allocated memory used
by this class instance.

What happens if you don’t define a copy constructor? Or an assignment operator? Or a
destructor? Why might this be bad? (Hint: What if a member of a class is a pointer to a
heap-allocated struct?)
In C++, if you don’t define any of these, a default one will be synthesized for you.

- The synthesized copy constructor does a shallow copy of all fields.

- The synthesized assignment operator does a shallow copy of all fields.

- The synthesized destructor calls the destructors of any fields that have them.

How can you disable the copy constructor/assignment operator/destructor?
Set their prototypes equal to the keyword “delete”. ~SomeClass () = delete;

When is the initialization list of a constructor run, and in what order are data members
initialized?

The initialization list is run before the body of the ctor, and data members are initialized in the
order that they are defined in the class, not by initialization list ordering

What happens if data members are not included in the initialization list?
Data members that don’t appear in the initialization list are default initialized/constructed before
the ctor body is executed. Including when there is no initialization list!

Exercise 3) Order the execution of the following program:

class Bar {
public:
Bar() : num_(0) { } // 0-arg ctor
Bar(int num) : num_(num) { } // l-arg ctor
Bar(const Bar& other) : num_(other.num_) { } // cctor
~Bar() { } // dtor
Bar& operator=(const Bar& other) = default; // op=
int get_num() const { return num_; } // getter

private:
int num_;

15

class Foo {
public:
Foo() : bar_(5) { } // 0-arg ctor
Foo(const Bar& b) { bar_ = b; } // 1-arg ctor
~Foo() { } // dtor

private:
Bar bar_;

+s

Number the following starting with 1.
int main() {

Bar b1(3); Each method may be called more than
Bar b2 = bil; once (i.e., you can put multiple numbers
Foo f1; on the same line).

Foo f2(b2);

6 Bar 0-arg ctor
return EXIT_SUCCESS;

} 1.4 Bar l-arg ctor
2 Bar cctor
7 Bar op=
3 Foo O-arg ctor
5 Foo 1-arg ctor
8,10 Foo dtor

9,11,12.13 Bar dtor

Dynamically-Allocated Memory: New and Delete
In C++, memory can be heap-allocated using the keywords “new” and “delete”. You can think
of these like malloc () and free () with some key differences:

e Unlikemalloc () and free (), new and delete are operators, not functions.

e The implementation of allocating heap space may vary between malloc and new.

New: Allocates the type on the heap, calling the specified constructor if it is a class type.
Syntax for arrays is “new type [num]”. Returns a pointer to the type.

Delete: Deallocates the type from the heap, calling the destructor if it is a class type. For
anything you called “new” on, you should at some point call “delete” to clean it up. Syntax for
arrays is “delete[] name”.

Just like baking soda and vinegar, you shouldn’t mix malloc/free with new/delete.

Exercise 4) Memory Leaks
#include <cstdlib>

class Leaky {

public:

Leaky () { x_ = new int(5); }

~Leaky() { delete x ; } // Delete the allocated int
private:

int* x ;

b

int main(int argc, char** argv) {

Leaky** dbl ptr = new Leaky*;

Leaky* 1lky ptr = new Leaky():

*dbl ptr = lky ptr;

delete dbl ptr;

delete lky ptr; // Delete of dbl ptr doesn’t delete what lky ptr
points to

return EXIT SUCCESS;
}

What is leaked by this program? How would you fix the memory leaks?
Deleting the db1 ptr doesn’t automatically delete what the pointer points to. Have to also
delete 1ky ptr and then create a destructor that deletes the allocated int pointer x .

Exercise 5) Identify the memory error with the following code. Then fix it!

class BadCopy {

public:
BadCopy () { arr = new int[5]; }
~BadCopy () { delete [] arr ; }
private:

int* arr ;

b

int main(int argc, char** argv) {
BadCopy* bcl = new BadCopy;
BadCopy* bc2 = new BadCopy(*bcl); // BadCopy's cctor

delete bcl;
delete bc2;

return EXIT SUCCESS;

——

Hint: Draw a memory diagram. What happens when bc1 gets deleted?

The default copy constructor does a shallow copy of the fields, so bc2’s arr points to the
same array as bcl’'s arr . When bcl gets deleted, so does its arr . But this arr is the
same one bc2’s arr _points to, so when bc2 gets deleted, its arr has already been deleted,
leading to an invalid delete (similar to a double free ()).

