
‭CSE 333 Section 5 - C++ Classes, Dynamic Memory‬
‭Welcome back to section! We’re glad that you’re here :)‬

‭References‬
‭References create‬‭aliases‬‭that we can bind to existing‬‭variables. References are not separate‬
‭variables and cannot be reassigned after they are initialized. In C++, you define a reference‬
‭using:‬‭type& name = var‬‭. The ‘‬‭&‬‭’ is similar to the‬‭‘‬‭*‬‭’ in a pointer definition in that it modifies‬
‭the type and the space can come before or after it.‬

‭Const‬
‭Const makes a variable‬‭unchangeable‬‭after initialization,‬‭and is enforced at compile time.‬

‭const int x = 5; // Can’t assign to x‬
‭const int* x_ptr = &x; // Can assign to x_ptr, but not *x_ptr‬
‭int* const y_ptr = &y; // Can assign to *y_ptr, but not y_ptr‬
‭const int* const z_ptr = &z; // Can’t assign to *z_ptr or z_ptr‬

‭Class objects can be declared const too - a const class object can only call member functions‬
‭that have been declared as const, which are not allowed to modify the object instance it is being‬
‭called on.‬

‭Exercises‬‭:‬
‭1) Consider the following functions and variable declarations.‬

‭a)‬ ‭Draw a memory diagram for the variables declared in‬‭main‬‭. It might be helpful to‬
‭distinguish variables that are constant in your memory diagram.‬

‭int main(int argc, char** argv) {‬
‭int x = 5;‬
‭int& x_ref = x;‬
‭int* x_ptr = &x;‬
‭const int& ro_x_ref = x;‬
‭const int* ro_ptr1 = &x;‬
‭int* const ro_ptr2 = &x;‬
‭// ...‬

‭}‬

‭b)‬ ‭When would you prefer‬‭void Func(int &arg);‬‭to‬‭void‬‭Func(int *arg);‬‭?‬
‭Expand on this distinction for other types besides‬‭int‬‭.‬

‭●‬ ‭When you don’t want to deal with pointer semantics, use references‬
‭●‬ ‭When you don’t want to copy stuff over (doesn’t create a copy, especially for parameters‬

‭and/or return values), use references‬
‭●‬ ‭Style wise, we want to use‬‭references for input parameters‬‭and‬‭pointers for output‬

‭parameters‬‭, with the output parameters declared last‬

‭c)‬ ‭If we have functions‬‭void Foo(const int& arg);‬‭and‬ ‭void Bar(int& arg);‬‭,‬
‭what does the compiler think about the following lines of code:‬

‭bar(x_ref);‬
‭bar(ro_x_ref);‬
‭foo(x_ref);‬

‭// No issues‬
‭// Error - ro_x_ref is const‬
‭// No issues‬

‭d)‬ ‭How about this code?‬

‭ro_ptr1 = (int*) 0xDEADBEEF;‬
‭x_ptr = &ro_x_ref;‬
‭ro_ptr2 = ro_ptr2 + 2;‬
‭*ro_ptr1 = *ro_ptr1 + 1;‬

‭// No issues‬
‭// Error - ro_x_ref is const‬
‭// Error - ro_ptr2 is const‬
‭// Error - (*ro_ptr1) is const‬

‭2) Refer to the following‬‭poorly-written‬‭class declaration.‬

‭class MultChoice {‬
‭public:‬
‭MultChoice(int q, char resp) : q_(q), resp_(resp) { }‬ ‭// 2-arg‬

‭ctor‬
‭int get_q() const { return q_; }‬
‭char get_resp() { return resp_; }‬
‭bool Compare(MultChoice &mc) const;‬ ‭// do these‬‭MultChoice's‬

‭match?‬

‭private:‬
‭int q_;‬ ‭// question number‬
‭char resp_;‬ ‭// response: 'A','B','C','D', or 'E'‬

‭};‬ ‭// class MultChoice‬

‭a)‬ ‭Indicate (‬‭Y‬‭/‬‭N‬‭) which‬‭lines‬‭of the snippets of code‬‭below (if any) would cause compiler‬
‭errors:‬

‭Code Snippets‬ ‭Error?‬ ‭Code Snippets‬ ‭Error?‬

‭const MultChoice m1(1,'A');‬
‭MultChoice m2(2,'B');‬
‭cout << m1.‬‭get_resp‬‭();‬
‭cout << m2.‬‭get_q‬‭();‬

‭N‬
‭N‬
‭Y‬
‭N‬

‭const MultChoice m1(1,'A');‬
‭MultChoice m2(2,'B');‬
‭m1.‬‭Compare‬‭(m2);‬
‭m2.‬‭Compare‬‭(m1);‬

‭N‬
‭N‬
‭N‬
‭Y‬

‭b)‬ ‭What would you change about the class declaration to make it better? Feel free to mark‬
‭directly on the class declaration above.‬

‭Many possibilities. Importantly, make get_resp() const and make the parameter to‬
‭Compare() const. Stylistically, it makes sense to add a setter method and default‬
‭constructor. Could also optionally disable copy constructor and assignment operator.‬

‭Member, Non-Member, and Friends, Oh My!‬

‭Member‬ ‭Non-member‬

‭Access to Private‬
‭Members:‬

‭Always‬ ‭●‬ ‭Through getters and‬
‭setters‬

‭●‬ ‭Through‬‭friend‬‭keyword‬
‭(do not use unless needed)‬

‭Function call (‬‭Func‬‭):‬ ‭obj1.Func(obj2)‬ ‭Func(obj1, obj2)‬

‭Operator call (‬‭*‬‭):‬ ‭obj1 * obj2‬ ‭obj1 * obj2‬

‭When preferred:‬ ‭●‬ ‭Functions that‬‭mutate‬
‭the object‬

‭●‬ ‭“Core” class‬
‭functionality‬

‭●‬ ‭Non-mutating‬‭functions‬
‭●‬ ‭Commutative functions‬
‭●‬ ‭When the class must be on‬

‭the right-hand side‬

‭Constructors, Destructors, what is going on?‬
‭-‬ ‭Constructor‬‭:‬‭Can define any number as long as they‬‭have different parameters.‬

‭Constructs a new instance of the class. The‬‭default‬‭constructor‬‭takes no arguments.‬
‭-‬ ‭Copy Constructor‬‭:‬‭Creates a new instance of the class‬‭based on another instance (it’s‬

‭the constructor that takes a reference to an object of the same class). Automatically‬
‭invoked when passing or returning a non-reference object to/from a function.‬

‭-‬ ‭Assignment Operator‬‭:‬‭Assigns the values of the right-hand-expression‬‭to the‬
‭left-hand-side instance.‬

‭-‬ ‭Destructor‬‭: Cleans up the class instance,‬‭i.e.‬‭free‬‭dynamically allocated memory used‬
‭by this class instance.‬

‭What happens if you don’t define a copy constructor? Or an assignment operator? Or a‬
‭destructor? Why might this be bad? (‬‭Hint‬‭: What if‬‭a member of a class is a pointer to a‬
‭heap-allocated struct?)‬
‭In C++, if you don’t define any of these, a default one will be synthesized for you.‬

‭-‬ ‭The synthesized copy constructor does a shallow copy of all fields.‬
‭-‬ ‭The synthesized assignment operator does a shallow copy of all fields.‬
‭-‬ ‭The synthesized destructor calls the destructors of any fields that have them.‬

‭How can you disable the copy constructor/assignment operator/destructor?‬
‭Set their prototypes equal to the keyword “delete”:‬‭~SomeClass() = delete;‬

‭When is the initialization list of a constructor run, and in what order are data members‬
‭initialized?‬
‭The initialization list is run before the body of the ctor, and data members are initialized in the‬
‭order that they are defined in the class, not by initialization list ordering‬

‭What happens if data members are not included in the initialization list?‬
‭Data members that don’t appear in the initialization list are‬‭default initialized/constructed‬‭before‬
‭the ctor body is executed. Including when there is‬‭no‬‭initialization list!‬

‭Exercise 3) Order the execution of the following program:‬

‭class‬‭Bar {‬
‭public‬‭:‬
‭Bar() : num_(0) { }‬ ‭//‬‭0-arg ctor‬
‭Bar(‬‭int‬‭num) : num_(num) { }‬ ‭//‬‭1-arg ctor‬
‭Bar(‬‭const‬‭Bar& other) : num_(other.num_) { }‬ ‭//‬‭cctor‬
‭~Bar() { }‬ ‭//‬‭dtor‬
‭Bar&‬‭operator‬‭=(‬‭const‬‭Bar& other) = default;‬ ‭//‬‭op=‬
‭int‬‭get_num()‬‭const‬‭{ return num_; }‬ ‭//‬‭getter‬

‭private‬‭:‬
‭int‬‭num_;‬

‭};‬

‭class‬‭Foo {‬
‭public‬‭:‬
‭Foo() : bar_(5) { }‬ ‭// 0-arg ctor‬
‭Foo(‬‭const‬‭Bar& b) { bar_ = b; }‬ ‭// 1-arg ctor‬
‭~Foo() { }‬ ‭// dtor‬

‭private‬‭:‬
‭Bar bar_;‬

‭};‬

‭int‬‭main() {‬
‭Bar b1(3);‬
‭Bar b2 = b1;‬
‭Foo f1;‬
‭Foo f2(b2);‬
‭return‬‭EXIT_SUCCESS;‬

‭}‬

‭Dynamically-Allocated Memory: New and Delete‬
‭In C++, memory can be heap-allocated using the keywords “‬‭new‬‭” and “‬‭delete‬‭”. You can think‬
‭of these like‬‭malloc()‬‭and‬‭free()‬‭with some key differences:‬

‭●‬ ‭Unlike‬‭malloc()‬‭and‬‭free()‬‭,‬‭new‬‭and‬‭delete‬‭are operators,‬‭not functions.‬
‭●‬ ‭The implementation of allocating heap space may vary between‬‭malloc‬‭and‬‭new‬‭.‬

‭New:‬ ‭Allocates the type on the heap, calling the‬‭specified constructor if it is a class type.‬
‭Syntax for arrays is “‬‭new type[num]‬‭”. Returns a pointer‬‭to the type.‬

‭Delete:‬ ‭Deallocates the type from the heap, calling‬‭the destructor if it is a class type. For‬
‭anything you called “‬‭new‬‭” on, you should at some point‬‭call “‬‭delete‬‭” to clean it up. Syntax for‬
‭arrays is “‬‭delete[] name‬‭”.‬

‭Just like baking soda and vinegar, you shouldn’t mix malloc/free with new/delete.‬

‭Exercise 4) Memory Leaks‬
‭#include <cstdlib>‬

‭class Leaky {‬
‭public:‬
‭Leaky() { x_ = new int(5); }‬
‭~Leaky() { delete x_; } // Delete the allocated‬‭int‬
‭private:‬
‭int* x_;‬

‭};‬

‭int‬‭main‬‭(int argc, char** argv) {‬
‭Leaky** dbl_ptr = new Leaky*;‬
‭Leaky* lky_ptr = new Leaky();‬
‭*dbl_ptr = lky_ptr;‬
‭delete dbl_ptr;‬
‭delete lky_ptr; // Delete of dbl_ptr doesn’t delete‬‭what lky_ptr‬

‭points to‬
‭return EXIT_SUCCESS;‬

‭}‬

‭What is leaked by this program? How would you fix the memory leaks?‬
‭Deleting the‬‭dbl_ptr‬‭doesn’t automatically delete‬‭what the pointer points to. Have to also‬
‭delete‬‭lky_ptr‬‭and then create a destructor that deletes‬‭the allocated int pointer‬‭x_‬‭.‬

‭Exercise 5) Identify the memory error with the following code. Then fix it!‬

‭class BadCopy {‬
‭public:‬
‭BadCopy() { arr_ = new int[5]; }‬
‭~BadCopy() { delete [] arr_; }‬
‭private:‬
‭int* arr_;‬

‭};‬

‭int main(int argc, char** argv) {‬
‭BadCopy* bc1 = new BadCopy;‬
‭BadCopy* bc2 = new BadCopy(*bc1); // BadCopy's cctor‬

‭delete bc1;‬
‭delete bc2;‬

‭return EXIT_SUCCESS;‬
‭}‬

‭Hint‬‭: Draw a memory diagram. What happens when‬‭bc1‬‭gets deleted?‬

‭The default copy constructor does a shallow copy of the fields, so‬‭bc2‬‭’s‬‭arr_‬‭points to the‬
‭same array as‬‭bc1‬‭’s‬‭arr_‬‭. When‬‭bc1‬‭gets deleted, so‬‭does its‬‭arr_‬‭. But this‬‭arr_‬‭is the‬
‭same one‬‭bc2‬‭’s‬‭arr_‬‭points to, so when‬‭bc2‬‭gets deleted,‬‭its‬‭arr_‬‭has already been deleted,‬
‭leading to an invalid delete (similar to a double‬‭free()‬‭).‬

