
 CSE 333 Section 5 - C++ Classes, Dynamic Memory
 Welcome back to section! We’re glad that you’re here :)

 References
 References create aliases that we can bind to existing variables. References are not separate
 variables and cannot be reassigned after they are initialized. In C++, you define a reference
 using: type& name = var . The ‘ & ’ is similar to the ‘ * ’ in a pointer definition in that it modifies
 the type and the space can come before or after it.

 Const
 Const makes a variable unchangeable after initialization, and is enforced at compile time.

 const int x = 5; // Can’t assign to x
 const int* x_ptr = &x; // Can assign to x_ptr, but not *x_ptr
 int* const y_ptr = &y; // Can assign to *y_ptr, but not y_ptr
 const int* const z_ptr = &z; // Can’t assign to *z_ptr or z_ptr

 Class objects can be declared const too - a const class object can only call member functions
 that have been declared as const, which are not allowed to modify the object instance it is being
 called on.

 Exercises :
 1) Consider the following functions and variable declarations.

 a) Draw a memory diagram for the variables declared in main . It might be helpful to
 distinguish variables that are constant in your memory diagram.

 int main(int argc, char** argv) {
 int x = 5;
 int& x_ref = x;
 int* x_ptr = &x;
 const int& ro_x_ref = x;
 const int* ro_ptr1 = &x;
 int* const ro_ptr2 = &x;
 // ...

 }

 b) When would you prefer void Func(int &arg); to void Func(int *arg); ?
 Expand on this distinction for other types besides int .

 ● When you don’t want to deal with pointer semantics, use references
 ● When you don’t want to copy stuff over (doesn’t create a copy, especially for parameters

 and/or return values), use references
 ● Style wise, we want to use references for input parameters and pointers for output

 parameters , with the output parameters declared last

 c) If we have functions void Foo(const int& arg); and void Bar(int& arg); ,
 what does the compiler think about the following lines of code:

 bar(x_ref);
 bar(ro_x_ref);
 foo(x_ref);

 // No issues
 // Error - ro_x_ref is const
 // No issues

 d) How about this code?

 ro_ptr1 = (int*) 0xDEADBEEF;
 x_ptr = &ro_x_ref;
 ro_ptr2 = ro_ptr2 + 2;
 *ro_ptr1 = *ro_ptr1 + 1;

 // No issues
 // Error - ro_x_ref is const
 // Error - ro_ptr2 is const
 // Error - (*ro_ptr1) is const

 2) Refer to the following poorly-written class declaration.

 class MultChoice {
 public:
 MultChoice(int q, char resp) : q_(q), resp_(resp) { } // 2-arg

 ctor
 int get_q() const { return q_; }
 char get_resp() { return resp_; }
 bool Compare(MultChoice &mc) const; // do these MultChoice's

 match?

 private:
 int q_; // question number
 char resp_; // response: 'A','B','C','D', or 'E'

 }; // class MultChoice

 a) Indicate (Y / N) which lines of the snippets of code below (if any) would cause compiler
 errors:

 Code Snippets Error? Code Snippets Error?

 const MultChoice m1(1,'A');
 MultChoice m2(2,'B');
 cout << m1. get_resp ();
 cout << m2. get_q ();

 N
 N
 Y
 N

 const MultChoice m1(1,'A');
 MultChoice m2(2,'B');
 m1. Compare (m2);
 m2. Compare (m1);

 N
 N
 N
 Y

 b) What would you change about the class declaration to make it better? Feel free to mark
 directly on the class declaration above.

 Many possibilities. Importantly, make get_resp() const and make the parameter to
 Compare() const. Stylistically, it makes sense to add a setter method and default
 constructor. Could also optionally disable copy constructor and assignment operator.

 Member, Non-Member, and Friends, Oh My!

 Member Non-member

 Access to Private
 Members:

 Always ● Through getters and
 setters

 ● Through friend keyword
 (do not use unless needed)

 Function call (Func): obj1.Func(obj2) Func(obj1, obj2)

 Operator call (*): obj1 * obj2 obj1 * obj2

 When preferred: ● Functions that mutate
 the object

 ● “Core” class
 functionality

 ● Non-mutating functions
 ● Commutative functions
 ● When the class must be on

 the right-hand side

 Constructors, Destructors, what is going on?
 - Constructor : Can define any number as long as they have different parameters.

 Constructs a new instance of the class. The default constructor takes no arguments.
 - Copy Constructor : Creates a new instance of the class based on another instance (it’s

 the constructor that takes a reference to an object of the same class). Automatically
 invoked when passing or returning a non-reference object to/from a function.

 - Assignment Operator : Assigns the values of the right-hand-expression to the
 left-hand-side instance.

 - Destructor : Cleans up the class instance, i.e. free dynamically allocated memory used
 by this class instance.

 What happens if you don’t define a copy constructor? Or an assignment operator? Or a
 destructor? Why might this be bad? (Hint : What if a member of a class is a pointer to a
 heap-allocated struct?)
 In C++, if you don’t define any of these, a default one will be synthesized for you.

 - The synthesized copy constructor does a shallow copy of all fields.
 - The synthesized assignment operator does a shallow copy of all fields.
 - The synthesized destructor calls the destructors of any fields that have them.

 How can you disable the copy constructor/assignment operator/destructor?
 Set their prototypes equal to the keyword “delete”: ~SomeClass() = delete;

 When is the initialization list of a constructor run, and in what order are data members
 initialized?
 The initialization list is run before the body of the ctor, and data members are initialized in the
 order that they are defined in the class, not by initialization list ordering

 What happens if data members are not included in the initialization list?
 Data members that don’t appear in the initialization list are default initialized/constructed before
 the ctor body is executed. Including when there is no initialization list!

 Exercise 3) Order the execution of the following program:

 class Bar {
 public :
 Bar() : num_(0) { } // 0-arg ctor
 Bar(int num) : num_(num) { } // 1-arg ctor
 Bar(const Bar& other) : num_(other.num_) { } // cctor
 ~Bar() { } // dtor
 Bar& operator =(const Bar& other) = default; // op=
 int get_num() const { return num_; } // getter

 private :
 int num_;

 };

 class Foo {
 public :
 Foo() : bar_(5) { } // 0-arg ctor
 Foo(const Bar& b) { bar_ = b; } // 1-arg ctor
 ~Foo() { } // dtor

 private :
 Bar bar_;

 };

 int main() {
 Bar b1(3);
 Bar b2 = b1;
 Foo f1;
 Foo f2(b2);
 return EXIT_SUCCESS;

 }

 Dynamically-Allocated Memory: New and Delete
 In C++, memory can be heap-allocated using the keywords “ new ” and “ delete ”. You can think
 of these like malloc() and free() with some key differences:

 ● Unlike malloc() and free() , new and delete are operators, not functions.
 ● The implementation of allocating heap space may vary between malloc and new .

 New: Allocates the type on the heap, calling the specified constructor if it is a class type.
 Syntax for arrays is “ new type[num] ”. Returns a pointer to the type.

 Delete: Deallocates the type from the heap, calling the destructor if it is a class type. For
 anything you called “ new ” on, you should at some point call “ delete ” to clean it up. Syntax for
 arrays is “ delete[] name ”.

 Just like baking soda and vinegar, you shouldn’t mix malloc/free with new/delete.

 Exercise 4) Memory Leaks
 #include <cstdlib>

 class Leaky {
 public:
 Leaky() { x_ = new int(5); }
 ~Leaky() { delete x_; } // Delete the allocated int
 private:
 int* x_;

 };

 int main (int argc, char** argv) {
 Leaky** dbl_ptr = new Leaky*;
 Leaky* lky_ptr = new Leaky();
 *dbl_ptr = lky_ptr;
 delete dbl_ptr;
 delete lky_ptr; // Delete of dbl_ptr doesn’t delete what lky_ptr

 points to
 return EXIT_SUCCESS;

 }

 What is leaked by this program? How would you fix the memory leaks?
 Deleting the dbl_ptr doesn’t automatically delete what the pointer points to. Have to also
 delete lky_ptr and then create a destructor that deletes the allocated int pointer x_ .

 Exercise 5) Identify the memory error with the following code. Then fix it!

 class BadCopy {
 public:
 BadCopy() { arr_ = new int[5]; }
 ~BadCopy() { delete [] arr_; }
 private:
 int* arr_;

 };

 int main(int argc, char** argv) {
 BadCopy* bc1 = new BadCopy;
 BadCopy* bc2 = new BadCopy(*bc1); // BadCopy's cctor

 delete bc1;
 delete bc2;

 return EXIT_SUCCESS;
 }

 Hint : Draw a memory diagram. What happens when bc1 gets deleted?

 The default copy constructor does a shallow copy of the fields, so bc2 ’s arr_ points to the
 same array as bc1 ’s arr_ . When bc1 gets deleted, so does its arr_ . But this arr_ is the
 same one bc2 ’s arr_ points to, so when bc2 gets deleted, its arr_ has already been deleted,
 leading to an invalid delete (similar to a double free()).

