
CSE 333 Section 5
C++ Intro, Classes, and Dynamic Memory

Logistics

● Exercise 9:
○ Due 10/25 (Friday) @ 10:00 AM

● Homework 2
○ Due 10/29 (Tuesday) @ 10:00 PM

● Homework 3:
○ Out soon, we have ~3 weeks

Pointers, References, & Const

Example

Consider the following code:
int x = 5;
int& x_ref = x;
int* x_ptr = &x;

5x, x_ref 5

0x7fff...x_ptr

What are some tradeoffs to using pointers vs references?

Note syntactic similarity to
pointer declaration

Still the address-of operator!

Pointers vs. References

Pointers References

● Can move to different data via
reassignment/pointer arithmetic

● References the same data for its
entire lifetime - can’t reassign

● Can be initialized to NULL ● No sensible “default reference,”
must be an alias

● Useful for output parameters:
MyClass* output

● Useful for input parameters:
const MyClass &input

● void func(int& arg) vs. void func(int* arg)

● Use references when you don’t want to deal with pointer semantics

○ Allows real pass-by-reference

○ Can make intentions clearer in some cases

● STYLE TIP: use references for input parameters and pointers for output
parameters, with the output parameters declared last

○ Note: A reference can’t be NULL

Pointers, References, Parameters

Const

● Mark a variable with const to make
a compile time check that a variable
is never reassigned

● Does not change the underlying
write-permissions for this variable

int x = 42;

// Read only
const int* ro_x_ptr = &x;

// Can still modify x with
rw_x_ptr!
int* rw_x_ptr = &x;

// Only ever points to x
int* const x_ptr = &x;

420x7fff... 0x7fff...

xro_x_ptr rw_x_ptr

0x7fff...

x_ptr

Legend
Red = can’t change box it’s next to
Black = read and write

Exercise 1

Exercise 1

int x = 5;
int& x_ref = x;
int* x_ptr = &x;
const int& ro_x_ref = x;
const int* ro_ptr1 = &x;
int* const ro_ptr2 = &x;

5x, x_ref

0x7fff... x_ptrro_ptr1 0x7fff...

0x7fff... ro_ptr2

“Const pointer to an
int”

“Pointer to a const int”

ro_x_ref

Tip: Read the declaration “right-to-left”

Legend
Red = can’t change box it’s
next to
Black = read and write

Exercise 1

When would you prefer void Func(int &arg); to void Func(int *arg);? Expand on this
distinction for other types besides int.

• When you don’t want to deal with pointer semantics, use references
• When you don’t want to copy stuff over (doesn’t create a copy, especially for parameters

and/or return values), use references
• Style wise, we want to use references for input parameters and pointers for output

parameters, with the output parameters declared last

Which lines result in a compiler error?
✔ OK ❌ ERROR

bar(x_ref);
bar(ro_x_ref);
foo(x_ref);
ro_ptr1 = (int*) 0xDEADBEEF;
x_ptr = &ro_x_ref;
ro_ptr2 = ro_ptr2 + 2;
*ro_ptr1 = *ro_ptr1 + 1;

Exercise 1
void foo(const int& arg);
void bar(int& arg);

int x = 5;
int& x_ref = x;
int* x_ptr = &x;
const int& ro_x_ref = x;
const int* ro_ptr1 = &x;
int* const ro_ptr2 = &x;

5x, x_ref

0x7fff...

x_ptr
ro_ptr1 0x7fff...

0x7fff...ro_ptr2

ro_x_ref

✔
❌ ro_x_ref is const
✔
✔
❌ ro_x_ref is const
❌ ro_ptr2 is const
❌ (*ro_ptr1) is const

Legend
Red = can’t change box it’s next
to
Black = “read and write”

Objects and const Methods

#ifndef POINT_H_
#define POINT_H_

class Point {
 public:
 Point(const int x, const int y);
 int get_x() const { return x_; }
 int get_y() const { return y_; }
 double Distance(const Point& p) const;
 void SetLocation(const int& x, const int& y);

 private:
 int x_;
 int y_;
}; // class Point

#endif // POINT_H_

Cannot mutate the
object it’s called on.

Trying to change x_
or y_ inside will
produce a compiler
error!

A const class object can only
call member functions that have

been declared as const

Exercise 2

Exercise 2

✔
✔
❌
✔

const MultChoice m1(1,'A');
MultChoice m2(2,'B');
cout << m1.get_resp();
cout << m2.get_q();

Which lines of the
snippets of code below
would cause compiler
errors?

✔ OK ❌ ERROR

const MultChoice m1(1,'A');
MultChoice m2(2,'B');
m1.Compare(m2);
m2.Compare(m1);

✔
✔
✔
❌

class MultChoice {
 public:
 MultChoice(int q, char resp) : q_(q), resp_(resp) { } // 2-arg ctor
 int get_q() const { return q_; }
 char get_resp() { return resp_; }
 bool Compare(MultChoice &mc) const; // do these MultChoice's match?

 private:
 int q_; // question number
 char resp_; // response: 'A','B','C','D', or 'E'
}; // class MultChoice

What would you change about the
class declaration to make it better?

class MultChoice {
 public:
 MultChoice(int q, char resp) : q_(q), resp_(resp) { } // 2-arg ctor
 int get_q() const { return q_; }
 char get_resp() { return resp_; }
 bool Compare(MultChoice &mc) const; // do these MultChoice's match?

 private:
 int q_; // question number
 char resp_; // response: 'A','B','C','D', or 'E'
}; // class MultChoice

class MultChoice {
 public:
 MultChoice(int q, char resp) : q_(q), resp_(resp) { } // 2-arg ctor
 int get_q() const { return q_; }
 char get_resp() const { return resp_; }
 bool Compare(const MultChoice &mc) const; // do these match?

 private:
 int q_; // question number
 char resp_; // response: 'A','B','C','D', or 'E'
}; // class MultChoice

• Make get_resp() const
• Make the parameter to Compare() const
• Stylistically:

o Add a setter method and default constructor
o Disable copy constructor and assignment operator

Member vs. Non-Member Functions

● A member function is a part of the class and can be
invoked on the objects of the class

● A non-member function is a normal function that
happens to use the class
○ Often included in the module that defines the class

● Some functionality must be defined one way or the other,
but a lot can be defined either way, so let’s examine the
differences…

Member vs Non-Member Comparison

Member Non-member

Access to Private
Members:

Function call (Func):

Operator call (*):

When preferred:

Member Non-member

Access to Private
Members:

Always ● Through getters and setters
● Through friend keyword (do

not use unless needed)

Function call (Func): obj1.Func(obj2) Func(obj1, obj2)

Operator call (*): obj1 * obj2 obj1 * obj2

When preferred: ● Functions that mutate the
object

● “Core” class functionality

● Non-mutating functions
● Commutative functions
● When the class must be on the

right-hand side

Destructor (dtor): Cleans up the resources of an object when it falls out of scope or is deleted.

Constructors (ctor): Construct a new object (parameters must differ).

Copy Constructor (cctor): Constructs a new object based on another instance. Creates copies for
pass-by-value (i.e., non-references) and value return as well as variable declarations.

class Bar {
 public:
 Bar(); // 0-arg ctor
 Bar(int num); // 1-arg ctor
 Bar(const Bar& other); // cctor
 Bar& operator=(const Bar& other); // op=
 ~Bar(); // dtor
 ...
};

The “Big 4” of Classes (Review)

Assignment Operator (op=): Updates existing object based on another instance.

Construction and Destruction Details

Construction:
1. Construct/initialize data members in order of declaration within the class.

○ If data member appears in the initialization list, apply the specified
initialization, otherwise, default initialize.

2. Execute the constructor body.

Destruction:
● When multiple objects fall out of scope simultaneously, they are destructed in the

reverse order of construction.
1. Execute the destructor body.
2. Destruct data members in the reverse order of declaration within the class.

Design Considerations

● What happens if you don’t define a copy constructor? Or an assignment
operator? Or a destructor? Why might this be bad?

● How can you disable the copy constructor/assignment operator/destructor?

● In C++, if you don’t define any of these, one will be synthesized for you

● The synthesized copy constructor does a shallow copy of all fields

● The synthesized assignment operator does a shallow copy of all fields

● The synthesized destructor calls the default destructors of any fields

that have them

Set their prototypes equal to the keyword “delete”:

SomeClass(const SomeClass&) = delete;

Exercise 3

Exercise 3: Foo Bar Ordering
class Bar {
 public:
 Bar() : num_(0) { } // 0-arg ctor
 Bar(int num) : num_(num) { } // 1-arg ctor
 Bar(const Bar& other) : num_(other.num_) { } // cctor
 ~Bar() { } // dtor
 Bar& operator=(const Bar& other) = default; // op=
 int get_num() const { return num_; } // getter

 private:
 int num_;
};

class Foo {
 public:
 Foo() : bar_(5) { } // 0-arg ctor
 Foo(const Bar& b) { bar_ = b; } // 1-arg ctor
 ~Foo() { } // dtor

 private:
 Bar bar_;
};

Given these class declarations,
order the execution of the
program (on the next slide)

Exercise 3: Foo Bar Ordering
int main() {
 Bar b1(3);
 Bar b2 = b1;
 Foo f1;
 Foo f2(b2);
 return EXIT_SUCCESS;
}

Method Invocation Order:
 1. Bar 1-arg ctor (b1)
 2. Bar cctor (b2)
 3. Foo 0-arg ctor (f1)
 4. ⤷ Bar 1-arg ctor

bar_(5)

num_ = 5

f1

b1

num_ = 3

b2

num_ = 3

 5. Foo 1-arg ctor (f2)

bar_()

num_ = 0

 6. ⤷ Bar 0-arg ctor
 7. ⤷ Bar op=

f2

 8. Foo dtor (f2)

12. Bar dtor (b2)

 9. ⤷ Bar dtor
10. Foo dtor (f1)
11. ⤷ Bar dtor

13. Bar dtor (b1)
num_ = 3

New and Delete Operators
new: Allocates the type on the heap, calling specified constructor if it is a class type

 Syntax:

type* ptr = new type;

type* heap_arr = new type[num];

delete: Deallocates the type from the heap, calling the destructor if it is a class type. For
anything you called new on, you should at some point call delete to clean it up

 Syntax:

delete ptr;

delete[] heap_arr;

Exercise 4

Exercise 4: Memory Leaks
class Leaky {
 public:
 Leaky() { x_ = new int(5); }
 private:
 int* x_;
};

int main(int argc, char** argv) {
 Leaky** dbl_ptr = new Leaky*;
 Leaky* lky_ptr = new Leaky();
 *dbl_ptr = lky_ptr;
 delete dbl_ptr;
 return EXIT_SUCCESS;
}

Stack Heap

class Leaky {
 public:
 Leaky() { x_ = new int(5); }
 private:
 int* x_;
};

int main(int argc, char** argv) {
 Leaky** dbl_ptr = new Leaky*;
 Leaky* lky_ptr = new Leaky();
 *dbl_ptr = lky_ptr;
 delete dbl_ptr;
 return EXIT_SUCCESS;
}

???

Exercise 4: Memory Leaks Stack Heap

0x602010 0x602030

0x602030lky_ptr

dbl_ptr

0x602050x_

5

How can we fix this leak?
delete lky_ptr;
~Leaky() { delete x_; }

An Acronym to Know: RAII

● Stands for “Resource Acquisition Is Initialization”

● Any resources you acquire (locks, files, heap memory, etc.) should happen in
a constructor (i.e., during initialization)

● Then freeing those resources should happen in the destructor (and handled
properly in cctor, assignment operator, etc.)

● Prevents forgetting to call free/delete, the dtor is called automatically for
you when the object managing the resource goes out of scope.

● For more: https://en.cppreference.com/w/cpp/language/raii

Exercise 5

Exercise 5: Bad Copy Stack Heap

class BadCopy {
 public:
 BadCopy() { arr_ = new int[5]; }
 ~BadCopy() { delete [] arr_; }
 private:
 int* arr_;
};

int main(int argc, char** argv) {
 BadCopy* bc1 = new BadCopy;
 BadCopy* bc2 = new BadCopy(*bc1); // cctor
 delete bc1;
 delete bc2;
 return EXIT_SUCCESS;
}

Exercise 5: Bad Copy
Stack

Heap

class BadCopy {
 public:
 BadCopy() { arr_ = new int[5]; }
 ~BadCopy() { delete [] arr_; }
 private:
 int* arr_;
};

int main(int argc, char** argv) {
 BadCopy* bc1 = new BadCopy;
 BadCopy* bc2 = new BadCopy(*bc1);
 delete bc1;
 delete bc2;
 return EXIT_SUCCESS;
}

0x...bc20x...bc1

0x...arr_ 0x...arr_

Invalid delete: BAD

as if!

The “Rule of Three”

● If your class needs its own destructor, assignment operator, or copy
constructor, it almost certainly needs all three!

● BadCopy is a good example why, we need a destructor to delete arr, and
so we needed a copy constructor too because otherwise we end up with a
double delete

● BadCopy also needs its own assignment operator for the same reason, even
with a fixed copy constructor, b1 = b2; would still break!

● For more info/examples, see
https://en.cppreference.com/w/cpp/language/rule_of_three

