
CSE 333
Section 3
HW2 Overview, Makefiles



Checking In & Logistics

Quick check-in:

Do you have any 
questions, comments, 
or concerns?

Exercises going ok?

Lectures making 
sense?

2

REMINDERS:

Exercise 4: Due Tomorrow (10/11) @ 10:00 AM 

Homework 1: Due Tuesday (10/15) @ 11:00 PM



Homework 2 Overview



Homework 2

● Main Idea: Build a search engine for a file system
○ It can take in queries and output a list of files in a directory that has that query
○ The query will be ordered based on the number of times the query is in that file
○ Should handle multiple word queries (Note: all words in a query have to be in the 

file)

● What does this mean?
○ Part A: Parsing a file and reading all of its contents into heap allocated memory
○ Part B: Crawling a directory (reading all regular files recursively in a directory) 

and building an index to query from
○ Part C: Build a searchshell (search engine) to query your index for results

Note: It will use the LinkedList and 
HashTable implementations from HW1!



Part A: File Parsing

Read a file and generate a 
HashTable of WordPositions!

Word positions will include the word 
and LinkedList of its positions in a 
file.

My goodness!  I love the course CSE333.\n
I'll recommend this course to my friends.\n

somefile.txt

ParseIntoWordPositionsTable(contents)

typedef struct WordPositions {

 char        *word;      // normalized word.  Owned.

 LinkedList  *positions; // list of DocPositionOffset_t.

} WordPositions;

Note that the key is the hashed C-string of 
WordPositions



Part B: Directory Crawling – DocTable
Read through a directory in CrawlFileTree.c

For each file visited, build your DocTable and 
MemIndex!

DocTable maps document names to IDs. 
FNV64 is a hash function.
struct doctable_st {

 HashTable *id_to_name;  // mapping doc id to doc name

 HashTable *name_to_id;  // mapping docname to doc id

 DocID_t    max_id;      // max docID allocated so far

};

DocID_t DocTable_Add(DocTable *table, char *doc_name);



Part B: Directory Crawling – MemIndex

MemIndex is an index to view files. 
It’s a HashTable of WordPostings.

typedef struct {
 char        *word;
 HashTable   *postings;
} WordPostings;

Let’s try to find what contains 
“course”:
● WordPostings’ postings has an 

element with key == 3 (Only 
DocID 3 has “course in its file”)

● The value is the LinkedList of 
offsets the words are in DocID 3

HashTable

LinkedList

HashTableWordPostings

DocID_t

DocPositionOffset_t



Part C: Searchshell

● Use queries to ask for a result!
○ Formatting should match example output
○ Exact implementation is up to you!

course friends my

Query MemIndex_Search(MemIndex, 

QueryArray, QueryLen);

typedef struct SearchResult {

 uint64_t docid;  // a document that matches a search query

 uint32_t rank;   // an indicator of the quality of the match

} SearchResult, *SearchResultPtr;

Results from Query!

MemIndex.h



Hints

● Read the .h files for documentation about functions!
● Understand the high level idea and data structures before getting started
● Follow the suggested implementation steps given in the CSE 333 HW2 spec



Makefile Demo

https://docs.google.com/presentation/d/1Rcj8My9XKUDOGBAxHX77ob_Za_7zFWeI/edit?usp=sharing&ouid=111412004263961404228&rtpof=true&sd=true


Exercise 1

11



Exercise 1: Makefile

Refer to the following file definitions:

Let’s draw the relationships using a DAG and write the Makefile!



Part A: Draw out Point’s DAG



Part B: Write the Makefile


