CSE 333

Section 3
HW2 Overview, Makefiles

W UNIVERSITY of WASHINGTON

Checking In & Logistics

Quick check-in: REMINDERS:

Do you have any Exercise 4: Due Tomorrow (10/11) @ 10:00 AM
questions, comments,

Homework 1: Due Tuesday (10/15) @ 11:00 PM
or concerns”?
Exercises going ok?

Lectures making
sense?

Homework 2 Overview

Homework 2 Search

Go

e Main Idea: Build a search engine for a file system
o It can take in queries and output a list of files in a directory that has that query
o The query will be ordered based on the number of times the query is in that file
o Should handle multiple word queries (Note: all words in a query have to be in the
file)

e \What does this mean?
o Part A: Parsing a file and reading all of its contents into heap allocated memory
o Part B: Crawling a directory (reading all regular files recursively in a directory)
and building an index to query from
o Part C: Build a searchshell (search engine) to query your index for results

Note: It will use the LinkedList and
HashTable implementations from HW1!

Part A: File Parsing

Read a file and generate a
HashTable of WordPositions!

Word positions will include the word
and LinkedList of its positions in a
file.

typedef struct WordPositions {

char *word; // normalized word. Owned.

LinkedList *positions; // list of DocPositionOffset_t.

} WordPositions;

somefile.txt

My goodness! I love the course CSE333.\n
I'll recommend this course to my friends.

\n

ParseIntoWordPositionsTable(contents)

Note that the key is the hashed C-string of
WordPositions

RO %
T I e e T .
. "goodness” >
FNV64(my) [——> 3 I~
FNV64(goodness) i [14 | &4---»] 40 [~-.]
FNV64(i
NV64(i) iove]
FNV64(love) | 18 J-.]
"the”
FNV64(the) - 21 Sag
“course" I J I r 'I
FNV64(course) L j L= 1 .4"'>
["cse" |
FNV64(cse) [>l 32 [--.] ——
FNV64(ll) e - > | -l 42 [~~.]
["recommend” |
FNV64(recommend) - 1 | a5 f‘ :' o
FNV64(this) [— o= T—]
o)
e [I i |
FNV64(friends)
[“friends” |
> —>_ 73 [~.]

Part B: Directory Crawling — DocTable

Read through a directory in CrawlFileTree.c

For each file visited, build your DocTable and

Memindex!

DocTable maps document names to IDs.

FNV64 is a hash function.

struct doctable_st {

HashTable *id_to_name; // mapping doc id to doc name
HashTable *name_to_id; // mapping docname to doc 1id
DocID_t max_1id; // max docID allocated so far
}s

DocID_t DocTable_Add(DocTable *table, char *doc_name);

Key Value

3

docid_to_docname

"test_tree/README.TXT"

"test_tree/books/ulysses.txt"

"test_tree/bash-4.2/trap.c”

"test_tree/enron_email/2.”

"test_tree/example.txt”

Key

Value

FNV64("test_tree/README.TXT")

FNV64("test_tree/example.txt")

FNV64("test_tree/enron_email/2.")

FNV64("test_tree/bash-4.2/trap.c")

FNV64("test_tree/books/ulysses.txt")

docname_to_docid

(DocID_t) 5
(DocID_t) 3
(DocID_t) 2
(DoclD_t) 4

(DoclD_t) 1

Part B: Directory Crawling - Memlindex

. . . . DocID_t
Memindex is an index to view files. NG
It's a HashTable of WordPostings. HashTable | |urdrestines \\H,?thablvjm
FNV64("course”) — == k \3
typedef struct { FNV64("recommend’) 7
char *word; — LinkedList [& T e---»[& T]
HashTable *postings; i it 7
} WordPostings;
| W eemnen? ! pocPosition0ffset_t
Let’s try to find what contains L
“course”: Sute— o [s
e WordPostings’ postings has an o T T] ———
element with key == 3 (Only 3 N
7] I TPl : I
DoclID 3 has “course in its file”) |
e The value is the LinkedList of — e

offsets the words are in DocID 3

Part C: Searchshell

e Use queries to ask for a result!
o Formatting should match example output
o Exact implementation is up to you!

MemlIndex.h

typedef struct SearchResult {
uint64_t docid; // a document that matches a search query

uint32_t rank; // an 1indicator of the quality of the match

} SearchResult, *SearchResultPtr;

MemIndex_Search(MemIndex,

Query
Results from Query!

course friends my QueryArray, Querylen);

Hints

e Read the . h files for documentation about functions!
e Understand the high level idea and data structures before getting started
e Follow the suggested implementation steps given in the CSE 333 HW2 spec

Makefile Demo

https://docs.google.com/presentation/d/1Rcj8My9XKUDOGBAxHX77ob_Za_7zFWeI/edit?usp=sharing&ouid=111412004263961404228&rtpof=true&sd=true

Exercise 1

Exercise 1: Makefile

Refer to the following file definitions:

Point.h

UsePoint.cc

UseThing.cc

class Point { .. };

#include "Point.h"
#include "Thing.h"
int main(..) { ..

}

#include "Thing.h"
int main(..) { ..

}

Point.cc

Thing.h

Alone.cc

#include "Point.h"
// defs of methods

struct Thing { .. };
// full struct def here

int main(...) { .. }

Let’'s draw the relationships using a DAG and write the Makefile!

Part A: Draw out Point's DAG

UsePoint.cc

Point.h

Point.cc

Thing.h

UseThing.cc

Alone.cc

N S

UsePoint.o

Point.o

\/

UsePoint

UseThing Alone

all

Part B: Write the Makefile

CFLAGS = -Wall -g -std=c++17
all: UsePoint UseThing Alone

UsePoint: UsePoint.o Point.o
g++ $(CFLAGS) -o UsePoint UsePoint.o Point.o

UsePoint.o: UsePoint.cc Point.h Thing.h
g++ $(CFLAGS) -c UsePoint.cc

Point:ios Point:.cc: Point.h
g++ $(CFLAGS) -c Point.cc

UseThing: UseThing.cc Thing.h
g++ $(CFLAGS) -o UseThing UseThing.cc

Alone: Alone.cc
g++ $(CFLAGS) -o Alone Alone.cc

clean:
rm UsePoint UseThing Alone *.o *~

