
CSE 333 22au – Section 2: Structs and Debugging 

In this class, it is very helpful to be comfortable with gdb and valgrind as debugging tools. 
gdb allows you to see the source code and has many useful commands for analyzing your 
program; valgrind catches many types of runtime memory errors. 

Plenty of debugging resources can be found on the CSE333 Resources Page: 
https://courses.cs.washington.edu/courses/cse333/22au/resources.html  

Starting gdb 
For gdb to work with your C/C++ program, you must compile it using the “-g” flag! 
To start up gdb, run the following command (the -tui flag is optional and enables a text UI). 

bash$ gdb -tui <program file name> 

Some essential gdb commands 
If you want to know more, ask a TA or investigate the resources at the top of the page. 
Setting Breakpoints and Continuing 

● break <filename>:<line #> Set a new breakpoint 
● info breakpoints  Prints information about the set breakpoints 
● continue    Continue normal execution 

Controlling Program Execution 
● run <command_line_args> Run the program with provided 

command_line_args 
● next     Go to next instruction, but don't five into functions 
● step     Go to next instruction, and dive into functions 
● finish    Continue until  current function returns 
● quit     close gdb 

Examining the Current Program 
● list     Shows the current or given source context 
● backtrace    Shows the call stack 
● up     Moves up a stack frame 
● down     Moves down a stack frame 
● frame <#>    Move to a specific stack frame 
● print <expression>  Prints content of variable/memory location/register 

Starting valgrind 
Note that valgrind only analyzes the code reached during a specific execution of your program.  
Run the following command: 

bash$ valgrind --leak-check=full ./<program file name>  



reverse.c 
Download full code on the course website. 
/* Ask user for a word and print it forwards and backwards. 
 * CSE 333 demo (for debugging),  HP 
 */ 
 
#define MAX_STR 100   /* length of longest input string */ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
 
/* Return a new string with the contents of s backwards */ 
char * reverse(char * s) { 
  char * result = NULL;            /* the reversed string */ 
  int L, R; 
  char ch; 
 
  /* copy original string then reverse and return the copy */ 
  strcpy(result, s); 
 
  L = 0; 
  R = strlen(result); 
  while (L < R) { 
    ch = result[L]; 
    result[L] = result[R]; 
    result[R] = ch; 
    L++; R--; 
  } 
 
  return result; 
} 
 
 
/* Ask the user for a string, then print it forwards and backwards.     
*/ 
int main() { 
  char line[MAX_STR];    /* original input line */ 
  char * rev_line;       /* backwards copy from reverse function */ 
 
  printf("Please enter a string: "); 
  fgets(line, MAX_STR, stdin); 
  rev_line = reverse(line); 
  printf("The original string was:   >%s<\n", line); 
  printf("Backwards, that string is: >%s<\n", rev_line); 
  printf("Thank you for trying our program.\n"); 
  return EXIT_SUCCESS; 
}  



Exercise 1 
Draw a memory diagram for the execution of the code above up to the call to strcpy() in 
reverse(). Make sure to distinguish between local variables on the Stack and Heap-allocated 
memory. 
 
 
 
 
  



Exercise 2 
Feel free to make a few code changes based on your findings in Exercise 1.  However, the rest 
of your time for this exercise should be spent in gdb and valgrind and NOT staring at the 
code.  Find and fix all of the remaining logical and memory errors in the code and try to 
document/associate each fix with the tool features or output that led you there. 

Please use the space below for documenting your errors fixed and tooling assistance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Exercise 3 
Fix any remaining style issues with the code in reverse.c.  



simplestring.c 
  /* Buggy code for CSE 333 Section 2 
   * 1. Draw a memory diagram for the execution to identify errors. 
   * 2. Use gdb and valgrind to identify sources of runtime, logical, 
   * and memory errors. 
   * 3. Clean up the code style. 
   */ 
  #include <string.h>  // strncpy, strlen 
  #include <stdio.h>   // printf 
  #include <stdlib.h>  // malloc, EXIT_SUCCESS, NULL 
  
  // A SimpleString stores a C-string and its current length 
  typedef struct simplestring_st { 
 char* word; 
 int   length; 
  } SimpleString; 
  
  // Allocate a new SimpleString on the heap initialized with word 
  // and return pointer to the new SimpleString in dest 
  void InitWord(char* word, SimpleString* dest); 
  
  int main(int argc, char* argv[]) { 
 char comp[] = "computer"; 
 SimpleString ss = {comp, strlen(comp)}; 
 SimpleString* ss_ptr = &ss; 
  
 // expecting "1. computer, 8" 
 printf("1. %s, %d\n", ss_ptr->word, ss_ptr->length); 
  
 char cse[] = "cse333"; 
 InitWord(cse, ss_ptr); 
 // expecting "2. cse333, 6" 
 printf("2. %s, %d\n", ss_ptr->word, ss_ptr->length); 
  
 return EXIT_SUCCESS; 
  } 
  
  void InitWord(char* word, SimpleString* dest) { 
 dest = (SimpleString*) malloc(sizeof(SimpleString)); 
 dest->length = strlen(word); 
 dest->word = (char*) malloc(sizeof(char) * (dest->length + 1)); 
 strncpy(dest->word, word, dest->length + 1); 
  } 

  



Exercise 4 (Bonus) 
Draw a memory diagram of the execution of the above code (simplestring.c). Be sure to 
differentiate between memory on the Stack and Heap-allocated memory. 

 

 

 

 

 

 

 

 

Exercise 5 (Bonus) 
Can you identify and fix the bug causing issues with the initialization of our SimpleString 
structs? 


