
‭CSE 333 Section 1 - C, Pointers, and Gitlab‬
‭Sample Solutions‬
‭Exercise 1:‬
‭Consider the following snippet of code‬

‭void division(int numerator,‬
‭int denominator,‬
‭int* quotient,‬
‭int* remainder) {‬

‭*quotient = numerator / denominator;‬
‭*remainder = numerator % denominator;‬

‭}‬

‭int main(int argc, char* argv[]) {‬
‭int quot, rem;‬
‭division(22, 5,‬‭_____‬‭,‬‭_____‬‭);‬
‭printf("%d rem %d\n",‬‭_____‬‭,‬‭_____‬‭);‬
‭return EXIT_SUCCESS;‬

‭}‬

‭Which parameters of division() are output parameters?‬

‭quotient‬‭and‬‭remainder‬

‭What variables should go in the blank spaces in our call to division()?‬

‭"‬‭and‬‭&rem‬

‭What should go in the blank spaces in our call to printf()?‬

‭quot‬‭and‬‭rem‬

‭Draw out a memory diagram of the beginning of this call to division().‬

‭1‬

‭Exercise 2‬‭:‬
‭The following code has a bug. What’s the problem, and how would you fix it?‬
‭Changes shown in red:‬

‭void bar(char‬‭*‬‭ch) {‬
‭*‬‭ch = '3';‬

‭}‬

‭int main(int argc, char* argv[]) {‬
‭char fav_class[] = "CSE331";‬
‭bar(‬‭&‬‭fav_class[5]);‬
‭printf("%s\n", fav_class); // should print "CSE333"‬
‭return EXIT_SUCCESS;‬

‭}‬

‭The problem is that modifying the argument‬‭ch‬‭in‬‭bar‬‭will not affect‬‭fav_class‬‭in‬‭main‬
‭because arguments in C are always passed by value. To modify‬‭fav_class‬‭in‬‭main‬‭, we need‬
‭to pass a pointer to a character (‬‭char*‬‭) into‬‭bar‬‭and then dereference it:‬

‭2‬

‭Exercise 3 (bonus)‬‭:‬
‭strcpy‬‭is a function from the standard library that‬‭copies a string‬‭src‬‭into an output parameter‬
‭called‬‭dest‬‭and returns a pointer to‬‭dest‬‭. Write the‬‭function below. You may assume that‬‭dest‬
‭has sufficient space to store‬‭src‬‭.‬

‭char *strcpy(char *dest, char *src) {‬
‭char *ret_value = dest;‬
‭while (*src != '\0') {‬

‭*dest = *src;‬
‭src++;‬
‭dest++;‬

‭}‬
‭*dest = '\0'; // don’t forget the null terminator!‬
‭return ret_value;‬

‭}‬

‭How is the caller able to see the changes in‬‭dest‬‭if C is pass-by-value?‬

‭The caller can see the copied over string in‬‭dest‬‭since we are dereferencing‬‭dest‬‭. Note that‬
‭modifications to dest that do not dereference will not be seen by the caller(such as‬‭dest++‬‭).‬
‭Also note that if you used array syntax, then‬‭dest[i]‬‭is equivalent to‬‭*(dest+i)‬‭.‬

‭Why do we need an output parameter? Why can’t we just return an array we create in strcpy?‬

‭If we allocate an array inside‬‭strcpy‬‭, it will be‬‭allocated on the stack. Thus, we have no control‬
‭over this memory after‬‭strcpy‬‭returns, which means‬‭we can’t safely use the array whose‬
‭address we’ve returned.‬

‭3‬

‭Exercise 4 (bonus)‬‭:‬
‭More practice with output parameters and arrays.‬

‭Write a function to compute the sum of values and product of all values in an array. The function‬
‭is given a pointer to the first element in an array, the length of the array, and two output‬
‭parameters to return the product and sum.‬

‭void product_and_sum(int *input, int length, int *product,‬
‭int *sum) {‬

‭int temp_sum = 0;‬
‭int temp_product = 1;‬
‭for (int i = 0; i < length; i++) {‬

‭temp_sum += input[i];‬
‭temp_product *= input[i];‬

‭}‬
‭*sum = temp_sum;‬
‭*product = temp_product;‬

‭}‬

‭4‬

‭Exercise 5 (Bonus)‬‭:‬
‭Given the following command: “‬‭mkdir -v cats dogs‬‭”‬‭and‬‭argv = 0x1000‬‭, draw a‬
‭box-and-arrow memory diagram of‬‭argv‬‭and its contents‬‭for when‬‭mkdir‬‭executes.‬

‭argv‬‭is the second parameter, so its value is stored‬‭in‬‭%rsi‬‭and does not take up space in‬
‭memory. The character arrays have unknown/unspecified addresses that are stored in the‬
‭entries of‬‭argv‬‭. Each character of the command-line‬‭arguments takes up 1 byte of memory‬
‭and the elements of each character array have consecutive addresses, though the arrays are‬
‭likely not contiguous to each other.‬

‭Using the same information from above, what can you say about the values returned by the‬
‭following expressions? You may not be able to tell the exact value returned, but you should be‬
‭able to describe what that value is/represents.‬

‭1)‬‭argv[0] ->‬‭address of the first character in "mkdir"‬

‭2)‬‭argv + 1 ->‬‭0x1008‬

‭3)‬‭*(argv[1] + 1) ->‬‭'‬‭v'‬

‭4)‬‭argv[0] + 1 ->‬‭address of the second character in‬‭"mkdir"‬

‭5)‬‭argv[0][3] ->‬‭'‬‭i'‬

‭5‬

‭Exercise 6‬‭:‬
‭A prefix sum over an array is the running total of all numbers in the array up to and including the‬
‭current number. For example, given the array {1, 2, 3, 4}, the prefix sum would be {1, 3, 6, 10}.‬

‭Write a function to compute the prefix sum of an array given a pointer to its first element, the‬
‭pointer to the first element of the output array, and the length both arrays (assumed to be the‬
‭same).‬

‭void prefix_sum(int *input, int *output, int length) {‬
‭if (length == 0) {‬

‭return;‬
‭}‬
‭output[0] = input[0];‬

‭for (int i = 1; i < length; i++) {‬
‭output[i] = output[i - 1] + input[i];‬

‭}‬
‭}‬

‭6‬

