
‭CSE 333 Section 1 - C, Pointers, and Gitlab‬
‭Welcome to section!!!‬

‭Pointers‬
‭Pointers are a data type that store a memory address. We use them for a number of things in‬
‭C, such as:‬

‭●‬ ‭Simulating “pass-by-reference”‬
‭●‬ ‭Using function arguments as return values (also known as “‬‭output parameters‬‭”)‬
‭●‬ ‭Avoiding copying whole data structures when passing arguments into functions‬

‭If we have a variable‬‭x‬‭, then‬‭&x‬‭will give us the‬‭address of‬‭x‬‭. If we have a pointer‬‭p‬‭,‬‭*p‬‭will‬
‭give us the value stored at the address‬‭p‬‭is holding,‬‭or “the value‬‭p‬‭points to.”‬

‭Let’s look at an example!‬
‭int x;‬
‭int *ptr;‬
‭ptr = &x;‬
‭x = 5;‬
‭*ptr = 10;‬

‭1) We can represent the result of the above three lines of code‬
‭graphically.‬‭ptr‬‭stores the address of‬‭x‬‭. It “points‬‭to‬‭x‬‭.”‬ ‭x‬‭currently‬
‭doesn’t have a value because we did not assign it one!‬

‭2) After executing‬‭x = 5‬‭, our diagram changes.‬

‭3) After executing,‬‭*ptr = 10‬‭, our diagram changes‬‭again. Notice that‬
‭x‬‭has been modified by dereferencing‬‭ptr‬‭.‬

‭Output Parameters‬
‭Pointers let us modify the parameters we pass in (more precisely, we can modify the data our‬
‭argument points to). This leads us to a special kind of parameter known as an‬‭output‬
‭parameter‬‭. As the name suggests, this refers to a‬‭parameter that we use to store an output of a‬
‭function. These are very common in C and you will see a lot of library functions that use these.‬

‭1‬

‭Exercise 1‬‭:‬
‭Consider the following snippet of code.‬

‭void division(int numerator,‬
‭int denominator,‬
‭int* quotient,‬
‭int* remainder) {‬

‭*quotient = numerator / denominator;‬
‭*remainder = numerator % denominator;‬

‭}‬

‭int main(int argc, char* argv[]) {‬
‭int quot, rem;‬
‭division(22, 5,‬‭_____‬‭,‬‭_____‬‭);‬
‭printf("%d rem %d\n",‬‭_____‬‭,‬‭_____‬‭);‬
‭return EXIT_SUCCESS;‬

‭}‬

‭Which parameters are output parameters?‬

‭What variables should go in the blank spaces in our call to division()?‬

‭What should go in the blank spaces in our call to printf()?‬

‭Draw out a memory diagram of the beginning of this call to division().‬

‭2‬

‭Exercise 2:‬
‭The following code has a bug. What’s the problem, and how would you fix it?‬

‭void bar(char ch) {‬
‭ch = '3';‬

‭}‬

‭int main(int argc, char* argv[]) {‬
‭char fav_class[] = "CSE331";‬
‭bar(fav_class[5]);‬
‭printf("%s\n", fav_class);‬ ‭// should print "CSE333"‬
‭return EXIT_SUCCESS;‬

‭}‬

‭Git‬
‭CSE 333 Git setup and tutorial:‬
‭https://courses.cs.washington.edu/courses/cse333/23wi/gitlab/‬

‭Common commands:‬
‭●‬ ‭git clone <repo url>‬

‭○‬ ‭Downloads (“clones”) your repo from GitLab.‬
‭●‬ ‭git status‬

‭○‬ ‭Prints the status of your repo (‬‭e.g.‬‭changes that‬‭need to be committed).‬
‭●‬ ‭git add <list of files/directories>‬

‭○‬ ‭Stages a file to be committed to the repo. Note that “‬‭git add .‬‭” will stage any‬
‭changes in the current directory and subdirectories you have made since your last‬
‭commit.‬

‭●‬ ‭git commit -m "<commit message>"‬
‭○‬ ‭Commits changes to your repo.‬

‭●‬ ‭git push‬
‭○‬ ‭Pushes commits to GitLab from your local machine.‬

‭●‬ ‭git pull‬
‭○‬ ‭Pulls changes from GitLab to your local machine.‬

‭●‬ ‭git tag <tag>‬
‭○‬ ‭Puts a tag on your repo to indicate some important event (for this class, to indicate a‬

‭completed homework submission). Note that you have to push tags to GitLab much‬
‭like you would a commit.‬

‭3‬

https://courses.cs.washington.edu/courses/cse333/23wi/gitlab/

‭Exercise 3 (bonus)‬‭:‬
‭strcpy‬‭is a function from the standard library that‬‭copies a string‬‭src‬‭into an output parameter‬
‭called‬‭dest‬‭and returns a pointer to the beginning‬‭of the destination string. Write the function‬
‭below. You may assume that‬‭dest‬‭has sufficient space‬‭to store‬‭src‬‭.‬

‭char* strcpy(char* dest, char* src) {‬

‭}‬

‭How is the caller able to see the changes in‬‭dest‬‭if C is pass-by-value?‬

‭Why do we need an output parameter? Why can’t we just return an array we create in strcpy?‬

‭4‬

‭Exercise 4 (bonus)‬‭:‬
‭More practice with output parameters and arrays.‬

‭Write a function to compute the sum of values and product of all values in an array. The function‬
‭is given a pointer to the first element in an array, the length of the array, and two output‬
‭parameters to return the product and sum.‬

‭void product_and_sum(int* input, int length, int* product,‬
‭int* sum) {‬

‭}‬

‭5‬

‭Pointer Arithmetic and Arrays‬
‭We can do addition and subtraction to pointers, with a catch. Arithmetic on pointers is scaled to‬
‭the size of the type being pointed to (in bytes). So, in the above example,‬‭ptr + 1‬‭would‬
‭actually increase the value of‬‭ptr‬‭by 4 since it points‬‭to a 32-bit integer.‬

‭Arrays and pointers are very closely related. Array subscript notation is just special syntax for‬
‭pointer arithmetic with‬‭arr[i]‬‭being equivalent to‬‭*(arr + i)‬‭. Using an array name in an‬
‭expression returns the address of the first element in the array.‬

‭Exercise 5 (Bonus)‬‭:‬
‭Given the following command: “‬‭mkdir -v cats dogs‬‭”‬‭and‬‭argv = 0x1000‬‭, draw a‬
‭box-and-arrow memory diagram of‬‭argv‬‭and its contents‬‭for when‬‭mkdir‬‭executes.‬

‭Using the same information from above, what can you say about the values returned by the‬
‭following expressions? You may not be able to tell the exact value returned, but you should be‬
‭able to describe what that value is/represents.‬

‭1)‬‭argv[0]‬

‭2)‬‭argv + 1‬

‭3)‬‭*(argv[1] + 1)‬

‭4)‬‭argv[0] + 1‬

‭5)‬‭argv[0][3]‬

‭6‬

‭Exercise 6 (bonus)‬‭:‬
‭A prefix sum over an array is the running total of all numbers in the array up to and including the‬
‭current number. For example, given the array {1, 2, 3, 4}, the prefix sum would be {1, 3, 6, 10}.‬

‭Write a function to compute the prefix sum of an array given a pointer to its first element, the‬
‭pointer to the first element of the output array, and the length of both arrays (assumed to be the‬
‭same).‬

‭void prefix_sum(int* input, int* output, int length) {‬

‭}‬

‭7‬

