
CSE333, Autumn 2024L28: Course Wrap-Up

Course Wrap-Up
CSE 333

Instructor: Hannah C. Tang

Teaching Assistants:

Deeksha Vatwani Hannah Jiang Jen Xu

Justin Tysdal Leanna Nguyen Sayuj Shahi

Wei Wu Yiqing Wang Youssef Ben Taleb

CSE333, Autumn 2024L28: Course Wrap-Up

pollev.com/uwcse333

❖ Please take 10m to fill in course evaluations!

(this is as of 11:16 this morning, and is my all-time lowest

response rate)

❖ https://uw.iasystem.org/survey/296998

2

https://uw.iasystem.org/survey/296998

CSE333, Autumn 2024L28: Course Wrap-Up

Administrivia

❖ PLEASE fill out course evals and Bob Bandes Nominations

❖ Final exam next week (see next slides)

❖ Expect HW3, HW4, and final exam grades to be released

during finals week

▪ Sorry, regrade request window must perforce be short

4

CSE333, Autumn 2024L28: Course Wrap-Up

Final Exam Logistics

❖ Take-home format via Gradescope

▪ No Gradescope-imposed time limit

▪ Unlimited access to course resources (videos, slides, your notes)

▪ Released no later than 4:20pm on Mon, Dec 9

• If it's released earlier than that, I'll make an Ed announcement

5

CSE333, Autumn 2024L28: Course Wrap-Up

Final Exam: Suggested Plan

❖ TAKE A BREAK tonight or Saturday! Then …

❖ Do a general review of areas that you struggled with

▪ (eg, pointers, file I/O, etc)

▪ Ensure you know how to find the relevant videos, slides, demos, …

❖ Open the exam on Monday afternoon to take a topic inventory

▪ Do a targeted review of those topics on Monday evening

❖ [optional] Meet with your study group

▪ Discuss these questions, but don't take notes about these discussions

▪ Take a 30m break

❖ Fill out the exam without the benefit of other brains

▪ Eg, notes from study group, texts from friends, etc

6

CSE333, Autumn 2024L28: Course Wrap-Up

About Those Shoes …

❖ Yes, the underlying financial model is busted. Yes, as

individuals, we are unable to fix the whole model

❖ But …

7

CSE333, Autumn 2024L28: Course Wrap-Up

Can I Do Anything?

❖ Tracy Chou, 27-year-old mid-career software engineer at
a medium-sized company

❖ … changed how the industry talks about diversity

8

CSE333, Autumn 2024L28: Course Wrap-Up

Warning Signs of Damage

❖ Scale
▪ Does your algorithm affect many people?

▪ Your algorithm will “get it wrong” for some people

❖ Impact
▪ Impact != Negative impact

▪ Does your algorithm create large, noticeable changes in your users?

▪ Impact + Scale exacerbates our own prejudice, bias, misunderstanding

❖ Opacity
▪ Did your user opt into data collection? Were they even aware of its

collection?

▪ Did your user realize your algorithm’s result impacted them?

▪ Can they contest the results? Is there other recourse?

9

CSE333, Autumn 2024L28: Course Wrap-Up

So what have we been doing
for the last 10 weeks?

?

10

CSE333, Autumn 2024L28: Course Wrap-Up

Course Goals

❖ Explore the gap between:

11

The computer is a magic
machine that runs programs!

Intro 351

The computer is a stupid machine
that executes really, really simple

instructions (really, really fast).

CSE333, Autumn 2024L28: Course Wrap-Up

Course Map: 100,000 foot view

12

C application

C standard
library (glibc)

C++ STL/boost/
standard library

C++ application Java application

JRE

CPU memory storage network
GPU clock audio radio peripherals

HW/SW interface
(x86 + devices)

OS / app interface
(system calls)

operating system

hardware

CSE333, Autumn 2024L28: Course Wrap-Up

Systems Programming

❖ The programming skills, engineering discipline, and

knowledge you need to build a system

▪ Programming: C / C++

▪ Discipline: design, testing, debugging, performance analysis

▪ Knowledge: long list of interesting topics

• Concurrency, OS interfaces and semantics, techniques for consistent

data management, distributed systems algorithms, …

• Most important: a deep understanding of the “layer below”

13

CSE333, Autumn 2024L28: Course Wrap-Up

Main Topics

❖ C

▪ Low-level programming language

❖ C++

▪ The 800-lb gorilla of programming languages

▪ “better C” + classes + STL + smart pointers + …

❖ Memory management

❖ System interfaces and services

❖ Networking basics – TCP/IP, sockets, …

❖ Concurrency basics – POSIX threads, synchronization

14

CSE333, Autumn 2024L28: Course Wrap-Up

The C/C++ Ecosystem

❖ System layers:

▪ C/C++

▪ Libraries

▪ Operating system

❖ Building Programs:

▪ Pre-processor (cpp, #include, #ifndef, …)

▪ Compiler: source code → object file (.o)

▪ Linker: object files + libraries → executable

❖ Build tools:

▪ make and related tools

▪ Dependency graphs

15

CSE333, Autumn 2024L28: Course Wrap-Up

Program Execution

❖ What’s in a process?

▪ Address space

▪ Current state

• SP, PC, register values, etc.

▪ Thread(s) of execution

▪ Environment

• Arguments, open files, etc.

0xFF…FF

0x00…00

OS kernel [protected]

Stack

Heap

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

16

CSE333, Autumn 2024L28: Course Wrap-Up

Structure of C Programs

❖ Standard types and operators

▪ Primitives, extended types, structs, arrays, typedef, etc.

❖ Functions

▪ Defining, invoking, execution model

❖ Standard libraries and data structures

▪ Strings, streams, etc.

▪ C standard library and system calls, how they are related

❖ Modularization

▪ Declaration vs. definition

▪ Header files and implementations

▪ Internal vs. external linkage

❖ Handling errors without exception handling
▪ errno and return codes

17

CSE333, Autumn 2024L28: Course Wrap-Up

C++ (and C++11)

❖ A “better C”

▪ More type safety, stream objects, memory management, etc.

❖ References and const

❖ Classes and objects!

▪ So much (too much?) control: constructor, copy constructor,

assignment, destructor, operator overloading

▪ Inheritance and subclassing

• Dynamic vs. static dispatch, virtual functions, vtables and vptrs

• Pure virtual functions and abstract classes

• Subobjects and slicing on assignment

❖ Copy semantics vs. move semantics

18

CSE333, Autumn 2024L28: Course Wrap-Up

C++ (and C++11)

❖ C++ Casting
▪ What are they and why do we distinguish between them?

▪ Implicit conversion/construction and explicit

❖ Templates – parameterized classes and functions
▪ Similarities and differences from Java generics

▪ Template implementation via expansion

❖ STL – containers, iterators, and algorithms
▪ vector, list, map, set, etc.

▪ Copying and types

❖ Smart Pointers
▪ unique_ptr, shared_ptr, weak_ptr

▪ Reference counting and resource management

19

CSE333, Autumn 2024L28: Course Wrap-Up

Dynamic Dispatch, Virtual Functions, &c

❖ The most frequent question on ed as the exam

approaches, based on past experience.

❖ How to solve it? Understand the difference between static

compile-time types (declared types) and actual type of the

object referenced by a pointer.

❖ Understand which functions are virtual and which aren’t

▪ And remember that virtual is sticky, applies to all inherited /

overridden function in subclasses

❖ Then follow the chart (from lec. 19) ….

20

CSE333, Autumn 2024L28: Course Wrap-Up

Mixed Dispatch

❖ Which function is called is a mix of both compile time and

runtime decisions as well as how you call the function

▪ If called on an object (e.g. obj.Fcn()), usually optimized into a

hard-coded function call at compile time

▪ If called via a pointer or reference:

DeclaredT *ptr = new ActualT;

ptr->Fcn(); // which version is called?

21

Static dispatch – call
DeclaredT::fcn()

Is Fcn() defined in
DeclaredT

(either locally or
inherited)?

Is DeclaredT::Fcn()
marked virtual in

DeclaredT or in one of
its superclasses?

Error

Dynamic dispatch – call most-
derived version of fcn()

visible in ActualT

Yes Yes

NoNo

CSE333, Autumn 2024L28: Course Wrap-Up

Memory

❖ Object scope and lifetime

▪ Static, automatic, and dynamic allocation / lifetime

❖ Pointers and associated operators (&, *, ->, [])

▪ Can be used to link data or fake “call-by-reference”

❖ Dynamic memory allocation

▪ malloc/free (C), new/delete (C++)

▪ Who is responsible? Who owns the data? What happens when

(not if) you mess this up? (dangling pointers, memory leaks, …)

❖ Tools

▪ Debuggers (gdb), monitors (valgrind)

▪ Most important tool: thinking!

22

CSE333, Autumn 2024L28: Course Wrap-Up

Networking

❖ Conceptual abstraction layers

▪ Physical, data link, network, transport, session, presentation,

application

▪ Layered protocol model

• We focused on IP (network), TCP (transport), and HTTP (application)

❖ Network addressing

▪ MAC addresses, IP addresses (IPv4/IPv6), DNS (name servers)

❖ Routing

▪ Layered packet payloads, security, and reliability

23

CSE333, Autumn 2024L28: Course Wrap-Up

Network Programming

Client side

1) Get remote host IP

address/port

2) Create socket

3) Connect socket to remote

host

4) Read and write data

5) Close socket

Server side

1) Get local host IP

address/port

2) Create socket

3) Bind socket to local host

4) Listen on socket

5) Accept connection from

client

6) Read and write data

7) Close socket

24

CSE333, Autumn 2024L28: Course Wrap-Up

Concurrency

❖ Why or why not?

▪ Better throughput, resource utilization (CPU, I/O controllers)

▪ Tricky to get right – harder to code and debug

❖ Threads – “lightweight”

▪ Address space sharing; separate stacks for each thread

▪ Standard C/C++ library: pthreads

❖ Processes – “heavyweight”

▪ Isolated address spaces

▪ Forking functionality provided by OS

❖ Synchronization

▪ Data races, locks/mutexes, how much to lock…

25

CSE333, Autumn 2024L28: Course Wrap-Up

Processes vs Threads on One Slide

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

fork()PARENT CHILD

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SPparent

PCparent

Stackchild
SPchild

PCchild

26

CSE333, Autumn 2024L28: Course Wrap-Up

Phew! That’s it!

❖ But that’s a lot!!

❖ Take a look back and congratulate yourself on what

you’ve accomplished in a 10-week quarter!

27

CSE333, Autumn 2024L28: Course Wrap-Up

Courses: What’s Next?

❖ CSE401: Compilers (pre-reqs: 332, 351)

▪ Finally understand why a compiler does what it does

❖ CSE451: Operating Systems (pre-reqs: 332, 333)

▪ How do you manage all of the computer’s resources?

❖ CSE452: Distributed Systems (pre-reqs: 332, 333)

▪ How do you get large collections of computers to collaborate (correctly!)?

❖ CSE461: Networks (pre-reqs: 332, 333)

▪ The networking nitty-gritty: encoding, transmission, routing, security

❖ CSE455: Computer Vision

❖ CSE457: Computer Graphics

29

CSE333, Autumn 2024L28: Course Wrap-Up

This doesn’t happen without lots of help…

❖ Thanks to a fantastic staff – it can’t work without them!!

❖ And thanks to the folks who put the course together:

▪ Steve Gribble, John Zahorjan, Hal Perkins, Justin Hsia, me,

Aaron Johnston, Travis McGaha, many others

30

Deeksha Vatwani Hannah Jiang Jen Xu

Justin Tysdal Leanna Nguyen Sayuj Shahi

Wei Wu Yiqing Wang Youssef Ben Taleb

CSE333, Autumn 2024L28: Course Wrap-Up

And thanks to…

You

It’s been great to share new ideas and skills with everyone.

You should be proud of what you’ve done. Please take care

of yourself, watch your health, stay active, and help yourself,

your friends, your community.

31

CSE333, Autumn 2024L28: Course Wrap-Up

Congratulations and best wishes!

You’ve learned a lot – go out and build great things!

Come by and say hello in the future – I’d love to know what

you’ve been up to after CSE 333!

32

CSE333, Autumn 2024L28: Course Wrap-Up

33

