
CSE333, Autumn 2024L27: Concurrency Via Processes

Concurrency Via Processes
CSE 333

Instructor: Hannah C. Tang

Teaching Assistants:

Deeksha Vatwani Hannah Jiang Jen Xu

Justin Tysdal Leanna Nguyen Sayuj Shahi

Wei Wu Yiqing Wang Youssef Ben Taleb

CSE333, Autumn 2024L27: Concurrency Via Processes

pollev.com/uwcse333

❖ Consider two threads running within the same process.

Which of the following do they SHARE?

▪ In-use resources such as file handles and sockets

▪ System-available resources such as the file system or IP addresses

▪ Call stack

▪ Registers (eg, PC, SP)

▪ Virtual memory (page tables, TLBs, etc …)

2

CSE333, Autumn 2024L27: Concurrency Via Processes

Administrivia

❖ HW4 due tomorrow night

▪ With late days, can even be Thursday night (if you have them)

❖ Ex17 due Wednesday morning

❖ Ex 18 (the last one!) is Gradescope-only, due Friday

▪ Final-exam prep

❖ Awkward amount of time on Wednesday's lecture (~20m

of topics); choose your own adventure!

▪ Conversion tracking / Tracking pixels

▪ Event-based concurrency

4

CSE333, Autumn 2024L27: Concurrency Via Processes

Lecture(s) Outline

❖ searchserver

▪ Sequential

▪ Concurrent via threads: pthread_create()

• Implementation using dispatching threads

• Data Races

▪ Concurrent via forking processes: fork()

▪

▪ Conclusion

5

CSE333, Autumn 2024L27: Concurrency Via Processes

Creating New Processes

❖

▪ Creates a new process (the “child”) that is a clone* of the current

process (the “parent”)

• * Everything is cloned except threads

• Variables, file descriptors, open sockets, the virtual address space

(code, globals, heap, stack), etc are all cloned

▪ Primarily used in two patterns:

• Servers: fork a child to handle a connection

• Shells: fork a child that then exec’s a new program

6

pid_t fork(void);

CSE333, Autumn 2024L27: Concurrency Via Processes

fork() and Address Spaces

❖ A process executes within an

address space

▪ Includes segments for different parts

of memory

▪ Process tracks its current state using

the stack pointer (SP) and program

counter (PC)

7

0xFF…FF

0x00…00

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

CSE333, Autumn 2024L27: Concurrency Via Processes

fork() and Address Spaces

❖ Fork cause the OS to

clone the

address space

▪ The copies of the

memory segments are

(nearly) identical

▪ The new process has

copies of the parent’s

data, stack-allocated

variables, open file

descriptors, etc.

8

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

fork()PARENT CHILD

CSE333, Autumn 2024L27: Concurrency Via Processes

Threads vs. Processes

9

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

❖ Before creating a thread

▪ One thread of execution running

in the address space

• One PC, stack, SP

▪ That main thread invokes a

function to create a new thread

• Typically pthread_create()

PCparent

SPparent

CSE333, Autumn 2024L27: Concurrency Via Processes

Threads vs. Processes

10

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

pthread_create()

Stackchild

SPparent

PCparent

SPchild

PCchild

SPparent

PCparent

CSE333, Autumn 2024L27: Concurrency Via Processes

Threads vs. Processes

11

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]
Stackparent

Heap (malloc/free)
Read/Write Segments

.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork()

SPchild

PCchild

OS kernel [protected]
Stackparent

Heap (malloc/free)
Read/Write Segments

.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SPparent

PCparent

SPparent

PCparent

CSE333, Autumn 2024L27: Concurrency Via Processes

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return

from fork

• Parent receives child’s pid

• Child receives a 0

12

parent

OS

fork()

CSE333, Autumn 2024L27: Concurrency Via Processes

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return

from fork

• Parent receives child’s pid

• Child receives a 0

13

parent child

OS

clone

CSE333, Autumn 2024L27: Concurrency Via Processes

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return

from fork

• Parent receives child’s pid

• Child receives a 0

❖ See fork_example.cc

14

parent child

OS

child pid 0

CSE333, Autumn 2024L27: Concurrency Via Processes

pollev.com/uwcse333

What happens when a grandchild process finishes?

A. Zombie until grandparent exits

B. Zombie until grandparent reaps

C. Zombie until systemd reaps

D. ZOMBIE FOREVER!!!

E. I’m not sure…

15

CSE333, Autumn 2024L27: Concurrency Via Processes

Concurrent Server with Processes

❖ The parent process blocks on accept(), waiting for a

new client to connect

▪ When a new connection arrives, the parent calls fork() to

create a child process

▪ The child process handles that new connection and exit()’s

when the connection terminates

❖ Remember that children become “zombies” after

termination

▪ Option A: Parent calls wait() to “reap” children

▪ Option B: Use a double-fork trick

16

CSE333, Autumn 2024L27: Concurrency Via Processes

Double-fork Trick

17

server

CSE333, Autumn 2024L27: Concurrency Via Processes

Double-fork Trick

18

client

server accept()

CSE333, Autumn 2024L27: Concurrency Via Processes

Double-fork Trick

19

client

server

server
fork() child

CSE333, Autumn 2024L27: Concurrency Via Processes

Double-fork Trick

20

client server

server

server

fork() grandchild

CSE333, Autumn 2024L27: Concurrency Via Processes

Double-fork Trick

21

client server

server

child exit()’s / parent wait()’s

CSE333, Autumn 2024L27: Concurrency Via Processes

Double-fork Trick

22

client server

server
parent closes its
client connection

CSE333, Autumn 2024L27: Concurrency Via Processes

Double-fork Trick

23

client server

server

CSE333, Autumn 2024L27: Concurrency Via Processes

Double-fork Trick

24

client server

server

server

server

client

fork() grandchild
exit()

fork() child

CSE333, Autumn 2024L27: Concurrency Via Processes

Double-fork Trick

25

client server

client server

server

CSE333, Autumn 2024L27: Concurrency Via Processes

Double-fork Trick

26

client server

client server

client server

client server

client server

client server

client server

client server

client server

server

CSE333, Autumn 2024L27: Concurrency Via Processes

Concurrent with Processes

❖ See searchserver_processes/

30

CSE333, Autumn 2024L27: Concurrency Via Processes

Wherefore Concurrent Processes?

❖ Advantages:

▪ Almost as simple to code as sequential

• In fact, most of the code is identical!

▪ Concurrent execution leads to better CPU, network utilization

❖ Disadvantages:

▪ Processes are heavyweight

• Relatively slow to fork

• Context switching latency is high

▪ Communication between processes is complicated

31

CSE333, Autumn 2024L27: Concurrency Via Processes

Lecture(s) Outline

❖ searchserver

▪ Sequential

▪ Concurrent via threads: pthread_create()

• Implementation using dispatching threads

• Data Races

▪ Concurrent via forking processes: fork()

▪ Supplement: Concurrent via events: select()

▪ Conclusion

32

CSE333, Autumn 2024L27: Concurrency Via Processes

Review: Multi-“worker” Search Engine

33

client

client

client

client

client

client server

shared
data

structures

“The child process/thread handles that new connection
and subsequent I/O, then calls exit()/pthread_exit()

when the connection terminates”

client server

client server

server
In-memory
resources

In-memory
resources

In-memory
resources

Processes Threads

CSE333, Autumn 2024L27: Concurrency Via Processes

Event-Driven Programming

❖ Your program is structured as an event-loop consisting of

(mostly) independent, stateless tasks executing in any

order

34

void ProcessOneTask(state) {

query_words = state.buffer;

for (idx : state.indices) {

...

}

...

}

while (1) {

event = OS.GetNextEvent();

state = GetState(event);

ProcessOneTask(state);

}

CSE333, Autumn 2024L27: Concurrency Via Processes

Asynchronous I/O and Event-Driven Programming

❖ Use asynchronous or non-blocking I/O

❖ Your program begins processing a query

▪ When your program needs to read data to make further progress,

it registers interest in the data with the OS and then switches to a

different query

▪ The OS handles the details of issuing the read on the disk, or

waiting for data from the console (or other devices, like the

network)

▪ When data becomes available, the OS lets your program know

❖ Your program (almost never) blocks on I/O

35

CSE333, Autumn 2024L27: Concurrency Via Processes

One Way to Think About It

❖ Threaded code:

▪ OS and thread scheduler switch between threads for you

▪ Each thread executes its task sequentially, and per-task state is naturally

stored in the thread’s stack

❖ Event-driven code:

▪ You (or your framework) are the scheduler

• You (or your framework) also manages scheduling-related resources, such as

the connection

▪ You have to bundle up task state into continuations (data structures

describing what-to-do-next); tasks do not have their own stacks

▪ … what if your logic required multiple steps?

• Read from one index, then read from another index, then …

36

CSE333, Autumn 2024L27: Concurrency Via Processes

Multi-Step Event-Driven Programming
❖ Each step is a brand-new event

▪ Task state must include information about which step we’re on

37

void dispatch(task, event) {

switch (task.state) {

case READING_FROM_CONSOLE:

query_words = event.query;

async_read(index, query_words[0]);

task.state = READING_FROM_INDEX;

return;

case READING_FROM_INDEX:

results = event.results;

...

}

}

while (1) {

event = OS.GetNextEvent();

task = lookup(event);

dispatch(task, event);

}

CSE333, Autumn 2024L27: Concurrency Via Processes

Multi-Step, Event-Driven w/Async I/O

38

I
/
O

1
.
b

I
/
O

2
.
b

I
/
O

3
.
b

time

I
/
O

2
.
d

C
P
U

3
.
a

C
P
U

1
.
a

C
P
U

2
.
a

I
/
O

1
.
d

C
P
U

1
.
c

C
P
U

2
.
c

I
/
O

3
.
d

C
P
U

1
.
e

C
P
U

2
.
e

C
P
U

3
.
c

C
P
U

3
.
e

CSE333, Autumn 2024L27: Concurrency Via Processes

Non-blocking I/O vs. Asynchronous I/O

❖ Asynchronous I/O (disk)

▪ Program tells the OS to begin reading/writing

• The “begin_read” or “begin_write” returns immediately

• When the I/O completes, OS delivers an event to the program

▪ According to the Linux specification, the disk never blocks your

program (just delays it)

• Asynchronous I/O is primarily used to hide disk latency

• Asynchronous I/O system calls are messy and complicated 

▪ Reading from the network can truly block your program

• Remote computer may wait arbitrarily long before sending data

39

CSE333, Autumn 2024L27: Concurrency Via Processes

Non-blocking I/O vs. Asynchronous I/O

❖ Non-blocking I/O (network, console)

▪ Your program enables non-blocking I/O on its file descriptors

▪ Your program issues read() and write() system calls

• If the read/write would block, the system call returns immediately

▪ Program can ask the OS which file descriptors are

readable/writeable

• Program can choose to

40

CSE333, Autumn 2024L27: Concurrency Via Processes

Why Events?

❖ Advantages:

▪ Don’t have to worry about locks and race conditions

▪ For some kinds of programs, especially GUIs, leads to a very

simple and intuitive program structure

• One event handler for each UI event

❖ Disadvantages:

▪ Can lead to very complex structure for programs that do lots of

disk and network I/O

• Sequential code gets broken up into a jumble of small event handlers

• You have to package up all task state between handlers

41

CSE333, Autumn 2024L27: Concurrency Via Processes

Lecture(s) Outline

❖ searchserver

▪ Sequential

▪ Concurrent via threads: pthread_create()

• Implementation using dispatching threads

• Data Races

▪ Concurrent via forking processes: fork()

▪

▪ Conclusion

42

CSE333, Autumn 2024L27: Concurrency Via Processes

How Fast is fork()?

❖ See forklatency.cc

❖ ~ 0.25 ms per fork*

▪ ∴ maximum of (1000/0.25) = 4,000 connections/sec/core

▪ ~350 million connections/day/core

• This is fine for most servers

• Too slow for super-high-traffic front-line web services

– Facebook served ~ 750 billion page views per day in 2013!

Would need 3-6k cores just to handle fork(), i.e. without doing any work

for each connection

❖ *Past measurements are not indicative of future performance – depends on hardware, OS,

software versions, …

43

CSE333, Autumn 2024L27: Concurrency Via Processes

How Fast is pthread_create()?

❖ See threadlatency.cc

❖ ~0.036 ms per thread creation*

▪ ~10x faster than fork()

▪ ∴ maximum of (1000/0.036) = 28,000 connections/sec

▪ ~2.4 billion connections/day/core

❖ Much faster, but writing safe multithreaded code can be

serious voodoo

❖ *Past measurements are not indicative of future performance – depends on hardware, OS,

software versions, …, but will typically be an order of magnitude faster than fork()

44

CSE333, Autumn 2024L27: Concurrency Via Processes

Aside: Thread Pools

❖ In real servers, we’d like to avoid overhead needed to

create a new thread or process for every request

❖ Idea: Thread Pools:

▪ Create a fixed set of worker threads or processes on server

startup and put them in a queue

▪ When a request arrives, remove the first worker thread from the

queue and assign it to handle the request

▪ When a worker is done, it places itself back on the queue and

then sleeps until dequeued and handed a new request

45

CSE333, Autumn 2024L27: Concurrency Via Processes

Why Sequential?

❖ Advantages:

▪ Simple to write, maintain, debug

▪ The default. Supported everywhere!

❖ Disadvantages:

▪ Depending on application, poor performance

• One slow client will cause all others to block

• Poor utilization of resources (CPU, network, disk)

46

CSE333, Autumn 2024L27: Concurrency Via Processes

Why Concurrent Threads?

❖ Advantages:

▪ Almost as simple to code as sequential

▪ Concurrent execution with good CPU and network utilization

▪ Threads can run in parallel if you have multiple CPUs/cores

▪ Shared-memory communication is possible

❖ Disadvantages:

▪ Need language and OS support for threads

▪ If threads share data, you need locks or other synchronization

▪ Threads can introduce overhead (technical + cognitive)

▪ Threads have a “shared fate” (eg, “rogue” thread, shared limits)

47

CSE333, Autumn 2024L27: Concurrency Via Processes

Why Concurrent Processes?

❖ Advantages:

▪ Almost as simple to code as sequential

▪ Concurrent execution with good CPU and network utilization

▪ Processes almost certainly run in parallel thanks to OS time-

sharing

▪ No need to synchronize access to in-memory structures

❖ Disadvantages:

▪ Processes are heavyweight

• Relatively slow to fork and context switching latency is high

▪ Communication between processes is complicated

▪ Fewer things to synchronize – but when you do need to

synchronize, it’s hard! 48

CSE333, Autumn 2024L27: Concurrency Via Processes

Why Events?

❖ Advantages:

▪ For some kinds of programs – those with mostly-stateless, simple

responses – leads to very simple and intuitive program

• Eg, GUIs: one event handler for each UI event

❖ Disadvantages:

▪ Can lead to very complex structure for some programs

• Sequential logic gets broken up into a jumble of small event handlers

• You have to package up all task state between handlers

49

