
CSE333, Autumn 2024L26: Concurrency Via Threads

Concurrency Via Threads
CSE 333

Instructor: Hannah C. Tang

Teaching Assistants:

Deeksha Vatwani Hannah Jiang Jen Xu

Justin Tysdal Leanna Nguyen Sayuj Shahi

Wei Wu Yiqing Wang Youssef Ben Taleb

CSE333, Autumn 2024L26: Concurrency Via Threads

pollev.com/uwcse333

❖ Please review searchserver_sequential from today's

lecture code

3

CSE333, Autumn 2024L26: Concurrency Via Threads

Administrivia

❖ Section on WEDNESDAY this week: pthread tutorial

❖ HW4 due a week from tomorrow

▪ How’s it going? Networking code??

▪ Usual late day policy (max 2, if you have any left)

❖ Ex17 due in 1.5w (!!)

▪ But purely-optional ex16.5 available if you want simpler

threads practice

4

CSE333, Autumn 2024L26: Concurrency Via Threads

Some Common hw4 Bugs (part 1)

❖ Your browser tells you to download images/javascript instead

of displaying them

▪ Check the mime types in the server reply

❖ Your server works, but is really, really slow

▪ Check the 2nd argument to the QueryProcessor constructor

5

CSE333, Autumn 2024L26: Concurrency Via Threads

Some Common hw4 Bugs (part 2)

❖ Funny things happen after the first request

▪ Make sure you’re not destroying the HTTPConnection object too

early (e.g. falling out of scope in a while loop)

▪ Be sure to check for data in the buffer – might be an http request (or

part of one) already there left over from a previous read

❖ Server crashes on a blank request

▪ Make sure that you handle the case that read() (or

WrappedRead()) returns 0

6

CSE333, Autumn 2024L26: Concurrency Via Threads

Previously…

❖ We implemented a search server but it was sequential

▪ Processes requests one at a time regardless of client delays

▪ Terrible performance, resource utilization

❖ Servers should be concurrent

▪ Different ways to process multiple queries simultaneously:

• Issue multiple I/O requests simultaneously

• Overlap the I/O of one request with computation of another

• Utilize multiple CPUs or cores

• Mix and match as desired

7

CSE333, Autumn 2024L26: Concurrency Via Threads

Outline (next two lectures)

❖ We’ll look at different searchserver implementations

▪ Sequential

▪ Concurrent via threads: pthread_create()

• Implementation using dispatching threads

• Data Races

▪ Concurrent via forking processes: fork()

▪

•

▪ Conclusion

❖ Reference: Computer Systems: A Programmer’s

Perspective, Chapter 12 (CSE 351 book)
8

CSE333, Autumn 2024L26: Concurrency Via Threads

Sequential

❖ Pseudocode:

❖ See searchserver_sequential/

9

listen_fd = Listen(port);

while (1) {

client_fd = accept(listen_fd);

buf = read(client_fd);

resp = ProcessQuery(buf);

write(client_fd, resp);

close(client_fd);

}

CSE333, Autumn 2024L26: Concurrency Via Threads

Wherefore Sequential?

❖ Advantages:

▪ Super(?) simple to build/write

❖ Disadvantages:

▪ Incredibly poor performance

• One slow client will cause all others to block

• Poor utilization of resources (CPU, network, disk)

10

CSE333, Autumn 2024L26: Concurrency Via Threads

Lecture(s) Outline

❖ searchserver implementations

▪ Sequential

▪ Concurrent via threads: pthread_create()

• Implementation using dispatching threads

• Data Races

▪ Concurrent via forking processes: fork()

▪

▪ Conclusion

11

CSE333, Autumn 2024L26: Concurrency Via Threads

Threads

❖ Threads are like lightweight processes

▪ They execute concurrently like processes

• Multiple threads can run simultaneously on multiple CPUs/cores

▪ Unlike processes, threads cohabitate the same address space

• Threads within a process see the same heap and globals and can

communicate with each other through variables and memory

– But, they can interfere with each other – need synchronization for shared

resources

• Each thread has its own stack

12

CSE333, Autumn 2024L26: Concurrency Via Threads

Threads and Address Spaces

❖ Before creating a thread

▪ One thread of execution running

in the address space

• One PC, stack, SP

▪ That main thread invokes a

function to create a new thread

• Typically pthread_create()

13

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SPparent

PCparent

CSE333, Autumn 2024L26: Concurrency Via Threads

Threads and Address Spaces

❖ After creating a thread

▪ Two threads of execution running

in the address space

• Original thread (parent) and new

thread (child)

• New stack created for child thread

• Child thread has its own PC, SP

▪ Both threads share the other

segments (code, heap, globals)

• They can cooperatively modify

shared data

14

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SPparent

PCparent

Stackchild
SPchild

PCchild

CSE333, Autumn 2024L26: Concurrency Via Threads

Multithreaded Server: Architecture

❖ A parent thread creates a new thread to handle each

incoming connection

▪ The child thread handles the new connection and subsequent I/O,

then exits when the connection terminates

❖ See searchserver_threads/ for code if curious

15

CSE333, Autumn 2024L26: Concurrency Via Threads

Multithreaded Server

16

client

server

accept()

CSE333, Autumn 2024L26: Concurrency Via Threads

Multithreaded Server

17

client

server

pthread_create()

CSE333, Autumn 2024L26: Concurrency Via Threads

Multithreaded Server

18

client

server

accept()

CSE333, Autumn 2024L26: Concurrency Via Threads

Multithreaded Server

19

client

client

server

pthread_create()

CSE333, Autumn 2024L26: Concurrency Via Threads

Multithreaded Server

20

client

client

client

client

client

client
server

shared
data

structures

CSE333, Autumn 2024L26: Concurrency Via Threads

POSIX Threads (pthreads)

❖ The POSIX APIs for dealing with threads

❖ Declared in pthread.h

▪ Not part of the C/C++ language (cf. Java)

❖ To enable support for multithreading, must include -

pthread flag when compiling and linking with gcc

command

21

CSE333, Autumn 2024L26: Concurrency Via Threads

pthreads Threads: Creation

❖

▪ Creates a new thread into *thread, with attributes *attr

▪ Returns a status code (0 or an error number)

▪ The new thread runs start_routine(arg)

❖

▪ Equivalent of exit(retval) for a thread instead of a process

▪ thread automatically exits when it returns from

start_routine()

22

int pthread_create(

pthread_t* thread,

const pthread_attr_t* attr,

void* (*start_routine)(void*),

void* arg);

void pthread_exit(void* retval);

CSE333, Autumn 2024L26: Concurrency Via Threads

pthreads Threads: Afterwards

❖

▪ Waits for thread to terminate (equivalent to waitpid, but for

threads)

▪ Exit status of the terminated thread is placed in **retval

❖

▪ Mark thread as detached; will clean up its resources as soon as it

terminates

❖ See thread_example.cc

23

int pthread_detach(pthread_t thread);

int pthread_join(pthread_t thread,

void** retval);

CSE333, Autumn 2024L26: Concurrency Via Threads

Concurrent Server via Threads

❖ See searchserver_threads/

❖ Notes:

▪ When calling pthread_create(), start_routine points

to a function that takes only one argument (a void*)

• To pass complex arguments into the thread, create a struct to bundle

the necessary data

▪ How do you properly handle memory management?

• Who allocates and deallocates memory?

• How long do you want memory to stick around?

24

CSE333, Autumn 2024L26: Concurrency Via Threads

Wherefore Concurrent Threads?

❖ Advantages:

▪ Almost as simple to code as sequential

• In fact, most of the code is identical! (but a bit more complicated to

dispatch a thread)

▪ Concurrent execution with good CPU and network utilization

• Some overhead, but less than processes

▪ Shared-memory communication is possible

❖ Disadvantages:

▪ Shared fate within a process

• One “rogue” thread can hurt you badly

▪ Synchronization is complicated

25

CSE333, Autumn 2024L26: Concurrency Via Threads

Lecture(s) Outline

❖ searchserver implementations

▪ Sequential

▪ Concurrent via threads: pthread_create()

• Implementation using dispatching threads

• Data Races

▪ Concurrent via forking processes: fork()

▪

▪ Conclusion

26

CSE333, Autumn 2024L26: Concurrency Via Threads

Threads and Data Races

❖ What happens if two threads try to mutate the same data

structure?

▪ They might interfere in painful, non-obvious ways, depending on

the specifics of the data structure

❖ Example: two threads try to push an item onto the head

of a linked list at the same time

▪ Could get “correct” answer

▪ Could get different ordering of items

▪ Could break the data structure!

▪ Likely will get different results each time you run the program – a

debugging nightmare

27

CSE333, Autumn 2024L26: Concurrency Via Threads

Data Race Example

❖ If your fridge has no milk,

then go out and buy some more

❖ What could go wrong?

❖ If you live alone:

❖ If you live with a roommate:

28

if (!milk) {

buy milk

}

! !

CSE333, Autumn 2024L26: Concurrency Via Threads

pollev.com/uwcse333

❖ Idea: leave a note!

▪ Does this fix the problem?

A. Yes, problem fixed

B. No, could end up with no milk

C. No, could still buy multiple milk

D. We’re lost…

29

if (!note) {

if (!milk) {

leave note

buy milk

remove note

}

}

CSE333, Autumn 2024L26: Concurrency Via Threads

Synchronization

❖ Synchronization is the act of preventing two (or more)
concurrently running threads from interfering with each
other when operating on shared data
▪ Need some mechanism to coordinate the threads

• “Let me go first, then you can go”

▪ Many different coordination mechanisms have been invented
(see CSE 451)

❖ Goals of synchronization:
▪ Liveness – ability to execute in a timely manner (informally,

“something good happens!”)

▪ Safety – avoid unintended interactions with shared data
structures (informally, “nothing bad happens”)

31

CSE333, Autumn 2024L26: Concurrency Via Threads

Lock Synchronization

❖ Use a “Lock” to grant access to a critical section so that

only one thread can operate there at a time

▪ Executed in an uninterruptible (i.e. atomic) manner

❖ Lock Acquire

▪ Wait until the lock is free,

then take it

❖ Lock Release

▪ Release the lock

▪ If other threads are waiting, wake exactly one up to pass lock to

32

// non-critical code

lock.acquire();

// critical section

lock.release();

// non-critical code

loop/idle
if locked

❖ Pseudocode:

CSE333, Autumn 2024L26: Concurrency Via Threads

Milk Example – What is the Critical Section?

❖ What if we use a lock on the

refrigerator?

▪ Probably overkill – what if

roommate wanted to get eggs?

❖ For performance reasons, only

put what is necessary in the

critical section

▪ Only lock the milk

▪ But lock all steps that must run

uninterrupted (i.e., must run

as an atomic unit)

33

fridge.lock()

if (!milk) {

buy milk

}

fridge.unlock()

milk_lock.lock()

if (!milk) {

buy milk

}

milk_lock.unlock()

CSE333, Autumn 2024L26: Concurrency Via Threads

pthreads and Locks

❖ Another term for a lock is a mutex (“mutual exclusion”)

▪ pthreads (#include <pthread.h>) defines datatype

pthread_mutex_t

❖ pthread_mutex_init()

▪ Initializes a mutex with specified attributes

❖ pthread_mutex_lock()

▪ Acquire the lock – blocks if already locked

❖ pthread_mutex_unlock()

▪ Releases the lock

34

int pthread_mutex_unlock(pthread_mutex_t* mutex);

int pthread_mutex_lock(pthread_mutex_t* mutex);

int pthread_mutex_init(pthread_mutex_t* mutex,

const pthread_mutexattr_t* attr);

CSE333, Autumn 2024L26: Concurrency Via Threads

C++11 Threads

❖ C++11 added threads and concurrency to its libraries

▪ <thread> – thread objects

▪ <mutex> – locks to handle critical sections

▪ <condition_variable> – used to block objects until

notified to resume

▪ <atomic> – indivisible, atomic operations

▪ <future> – asynchronous access to data

▪ These might be built on top of <pthread.h>, but also might

not be

❖ Definitely use in C++11 code if local conventions allow,

but pthreads will be around for a long, long time

▪ Use pthreads in our exercise
35

