
CSE333, Autumn 2024L25: Introduction to Concurrency

Introduction to Concurrency
CSE 333

Instructor: Hannah C. Tang

Teaching Assistants:

Deeksha Vatwani Hannah Jiang Jen Xu

Justin Tysdal Leanna Nguyen Sayuj Shahi

Wei Wu Yiqing Wang Youssef Ben Taleb

CSE333, Autumn 2024L25: Introduction to Concurrency

pollev.com/uwcse333

❖ Find your favorite browser's version of its "developer

console" and open a request to cs.washington.edu

3

CSE333, Autumn 2024L25: Introduction to Concurrency

Administrivia

❖ Ex16 due Monday!

❖ HW4 has an abbreviated timeline!

▪ Median completion time was 16h

❖ Learning is supposed to be hard

▪ But it's not supposed to cause suffering. It's ok to ask for help

when things are too hard – many of your peers already have!

❖ About HW3 in particular …

▪ Just 1 hw out of 4, and homeworks are "only" 35% of your grade

▪ This class does not attempt to "fit a curve" – if a few peers do

well, it doesn't mean that you will do poorly
4

CSE333, Autumn 2024L25: Introduction to Concurrency

Lecture Outline

❖ Understanding Concurrency

❖ Concurrent Programming Styles

▪ Threads vs. processes

▪ Asynchronous or non-blocking I/O

• aka “Event-driven programming”

5

CSE333, Autumn 2024L25: Introduction to Concurrency

Building a Web Search Engine

❖ We have:

▪ A web index

• A map from <word> to <list of documents containing the word>

• This is probably sharded over multiple files

▪ A query processor

• Accepts a query composed of multiple words

• Looks up each word in the index

• Merges the result from each word into an overall result set

❖ We need:

▪ Something that turns HTTP requests into well-formed queries

6

CSE333, Autumn 2024L25: Introduction to Concurrency

Web Search Architecture

7

query
processor

client

client

client

client

client

index
file

index
file

index
file

CSE333, Autumn 2024L25: Introduction to Concurrency

Sequential Implementation

❖ Pseudocode for sequential query processor:

8

doclist Lookup(string word) {

bucket = hash(word);

hitlist = file.read(bucket);

foreach hit in hitlist {

doclist.append(file.read(hit));

}

return doclist;

}

main() {

while (1) {

string query_words[] = GetNextQuery();

results = Lookup(query_words[0]);

foreach word in query[1..n] {

results = results.intersect(Lookup(word));

}

Display(results);

}

}

CSE333, Autumn 2024L25: Introduction to Concurrency

Execution Timeline: a Multi-Word Query

9

n
e
t
w
o
r
k

I
/
O

m
a
i
n
(
)

G
e
t
N
e
x
t
Q
u
e
r
y
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

n
e
t
w
o
r
k

I
/
O

D
i
s
p
l
a
y
(
)

G
e
t
N
e
x
t
Q
u
e
r
y
(
)

• • •

time

query

C
P
U

C
P
U

r
e
s
u
l
t
s
.
i
n
t
e
r
s
e
c
t
(
)

r
e
s
u
l
t
s
.
i
n
t
e
r
s
e
c
t
(
)

CSE333, Autumn 2024L25: Introduction to Concurrency

What About I/O-caused Latency?

❖ Jeff Dean’s “Numbers Everyone Should Know” (LADIS ‘09)

10

CSE333, Autumn 2024L25: Introduction to Concurrency

Execution Timeline: To Scale

11

n
e
t
w
o
r
k

I
/
O

m
a
i
n
(
)

d
i
s
k

I
/
O

d
i
s
k

I
/
O

d
i
s
k

I
/
O

• • •

time

query

n
e
t
w
o
r
k

I
/
O

C
P
U

C
P
U

CSE333, Autumn 2024L25: Introduction to Concurrency

Sequential Queries – Simplified

12

C
P
U

1
.
a

I
/
O

1
.
b

C
P
U

1
.
c

I
/
O

1
.
d

C
P
U

1
.
e

C
P
U

2
.
a

I
/
O

2
.
b

C
P
U

2
.
c

I
/
O

2
.
d

C
P
U

2
.
e

C
P
U

3
.
a

I
/
O

3
.
b

C
P
U

3
.
c

I
/
O

3
.
d

C
P
U

3
.
e

time

query 2

query 3

query 1

The CPU is idle most
of the time!

(picture not to scale)

Only one I/O request at
a time is “in flight”

Queries don’t run until
earlier queries finish

CSE333, Autumn 2024L25: Introduction to Concurrency

Sequential Queries: To Scale

13

I
/
O

1
.
b

I
/
O

1
.
d

time

query 2

query 1

I
/
O

1
.
b

I
/
O

1
.
d

I
/
O

1
.
b

I
/
O

1
.
d

query 3

CSE333, Autumn 2024L25: Introduction to Concurrency

Sequential Can Be Inefficient

❖ Only one query is being processed at a time

▪ All other queries queue up behind the first one

❖ The CPU is idle most of the time

▪ It is blocked waiting for I/O to complete

• Disk I/O can be very, very slow

❖ At most one I/O operation is in flight at a time

▪ Missed opportunities to speed I/O up

• Separate devices in parallel, better scheduling of a single device, etc.

14

CSE333, Autumn 2024L25: Introduction to Concurrency

Concurrency

❖ A version of the program that executes multiple tasks

simultaneously

▪ Example: Our web server could execute multiple queries at the

same time

• While one is waiting for I/O, another can be executing on the CPU

▪ Example: Execute queries one at a time, but issue I/O requests

against different files/disks simultaneously

• Could read from several index files at once, processing the I/O results

as they arrive

❖ Concurrency != parallelism

▪ Parallelism is when multiple CPUs work simultaneously on 1 job

15

CSE333, Autumn 2024L25: Introduction to Concurrency

A Concurrent Implementation

❖ Use multiple threads or processes

▪ As a query arrives, fork a new thread (or process) to handle it

• The thread reads the query from the console, issues read requests

against files, assembles results and writes to the console

• The thread uses blocking I/O; the thread alternates between

consuming CPU cycles and blocking on I/O

❖ The OS context switches between threads/processes

▪ While one is blocked on I/O, another can use the CPU

▪ Multiple threads’ I/O requests can be issued at once

16

CSE333, Autumn 2024L25: Introduction to Concurrency

Lecture Outline

❖ Understanding Concurrency

❖ Concurrent Programming Styles

▪ Threads vs. processes

▪ Asynchronous or non-blocking I/O

• aka “Event-driven programming”

17

CSE333, Autumn 2024L25: Introduction to Concurrency

pollev.com/uwcse333

❖ To implement a “process”, the operating system gives us:

▪ Resources such as file handles and sockets

▪ Call stack + registers to support (eg, PC, SP)

▪ Virtual memory (page tables, TLBs, etc …)

❖ If we want concurrency, what is the “minimal set” of the

above list that we need to execute a single line of code?

18

bucket = hash(word);

hitlist = file.read(bucket);

foreach hit in hitlist {

doclist.append(file.read(hit));

}

“Worker” 2“Worker” 1

CSE333, Autumn 2024L25: Introduction to Concurrency

Introducing Threads

❖ Separate the concept of a process from an individual

“thread of control”

▪ Usually called a thread (or a lightweight process), this is a

sequential execution stream within a process

❖ In most modern OS’s:

▪ Process: address space, OS resources/process attributes

▪ Thread: stack, stack pointer, program counter, registers

▪ Threads are the unit of scheduling and processes are their

containers; every process has at least one thread running in it
20

thread

CSE333, Autumn 2024L25: Introduction to Concurrency

Threads

❖ Threads were formerly called “lightweight processes”

▪ They execute concurrently like processes

• OS’s often treat them, not processes, as the unit of scheduling

• Parallelism for free! If you have multiple CPUs/cores, can run them

simultaneously

▪ Unlike processes, threads cohabitate the same address space

• Threads within a process see the same heap and globals and can

communicate with each other through variables and memory

– But can interfere with each other – need synchronization for shared

resources

• Each thread has its own stack

❖ What does the OS do when you switch processes?

▪ How does that differ from switching threads?
21

CSE333, Autumn 2024L25: Introduction to Concurrency

Multithreaded Pseudocode

22

doclist Lookup(string word) {

bucket = hash(word);

hitlist = file.read(bucket);

foreach hit in hitlist

doclist.append(file.read(hit));

return doclist;

}

ProcessQuery() {

results = Lookup(query_words[0]);

foreach word in query[1..n]

results = results.intersect(Lookup(word));

Display(results);

}

main() {

while (1) {

string query_words[] = GetNextQuery();

ForkThread(ProcessQuery());

}

}

CSE333, Autumn 2024L25: Introduction to Concurrency

Multithreaded Queries – Simplified

23

C
P
U

1
.
a

I
/
O

1
.
b

C
P
U

1
.
c

I
/
O

1
.
d

C
P
U

1
.
e

C
P
U

2
.
a

I
/
O

2
.
b

C
P
U

3
.
a

I
/
O

3
.
b

C
P
U

3
.
c

I
/
O

3
.
d

C
P
U

3
.
e

time

query 2

query 3

query 1

C
P
U

2
.
c

I
/
O

2
.
d

C
P
U

2
.
e

CSE333, Autumn 2024L25: Introduction to Concurrency

Why Threads?

❖ Advantages:

▪ You (mostly) write sequential-looking code

▪ Threads can run in parallel if you have multiple CPUs/cores

❖ Disadvantages:

▪ If threads share data, you need locks or other synchronization

• Very bug-prone and difficult to debug

▪ Threads can introduce overhead

• Lock contention, context switch overhead, and other issues

▪ Need language support for threads

24

CSE333, Autumn 2024L25: Introduction to Concurrency

Alternative: Processes

❖ What if we forked processes instead of threads?

❖ Advantages:

▪ No shared memory between processes

▪ No need for language support; OS provides “fork”

❖ Disadvantages:

▪ More overhead than threads during creation and context

switching

▪ Cannot easily share memory between processes – typically

communicate through the file system

25

CSE333, Autumn 2024L25: Introduction to Concurrency

Threads vs. Processes

26

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

❖ Before creating a thread

▪ One thread of execution running

in the address space

• One PC, stack, SP

▪ That main thread invokes a

function to create a new thread

• Typically pthread_create()

SPparent

PCparent

CSE333, Autumn 2024L25: Introduction to Concurrency

Threads vs. Processes

27

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

pthread_create()

Stackchild

SPparent

PCparent

SPchild

PCchild

CSE333, Autumn 2024L25: Introduction to Concurrency

Threads vs. Processes

28

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]
Stackparent

Heap (malloc/free)
Read/Write Segments

.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork()

SPchild

PCchild

OS kernel [protected]
Stackparent

Heap (malloc/free)
Read/Write Segments

.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SPparent

PCparent

CSE333, Autumn 2024L25: Introduction to Concurrency

Lecture Outline

❖ Understanding Concurrency

❖ Concurrent Programming Styles

▪ Threads vs. processes

▪ Asynchronous or non-blocking I/O

• aka “Event-driven programming”

29

CSE333, Autumn 2024L25: Introduction to Concurrency

Event-Driven Programming

❖ Your program is structured as an event-loop

30

void dispatch(task, event) {

switch (task.state) {

case READING_FROM_CONSOLE:

query_words = event.data;

async_read(index, query_words[0]);

task.state = READING_FROM_INDEX;

return;

case READING_FROM_INDEX:

...

}

}

while (1) {

event = OS.GetNextEvent();

task = lookup(event);

dispatch(task, event);

}

CSE333, Autumn 2024L25: Introduction to Concurrency

Event-Driven Programming

❖ Change how we do I/O!

❖ Your program begins processing a query

▪ When your program needs to read data to make further progress,

it registers interest in the data with the OS and then switches to a

different query

▪ The OS handles the details of issuing the read on the disk, or

waiting for data from the console (or other devices, like the

network)

▪ When data becomes available, the OS lets your program know via

a new event

31

CSE333, Autumn 2024L25: Introduction to Concurrency

One Way to Think About It

❖ Threaded code:

▪ OS and thread scheduler switch between threads for you

▪ Each thread executes its task sequentially, and per-task state is naturally

stored in the thread’s stack

❖ Event-driven code:

▪ You (or your framework) are the scheduler

• You (or your framework) also manages scheduling-related resources, such as

the connection

▪ You have to bundle up task state into continuations (data structures

describing what-to-do-next); tasks do not have their own stacks

▪ … what if your logic required multiple steps?

• Read from one index, then read from another index, then …

32

