W UNIVERSITY of WASHINGTON L25: Introduction to Concurrency CSE333, Autumn 2024

Introduction to Concurrency
CSE 333

Instructor: Hannah C. Tang

Teaching Assistants:

Deeksha Vatwani Hannah Jiang Jen Xu

Justin Tysdal Leanna Nguyen Sayuj Shahi

Wei Wu Yiging Wang Youssef Ben Taleb

W UNIVERSITY of WASHINGTON L25: Introduction to Concurrency CSE333, Autumn 2024

@ Poll Everywhere pollev.com/uwcse333

+ Find your favorite browser's version of its "developer
console" and open a request to cs.washington.edu

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

NEWS &EVENTS PEOPLE ACADEMICS RESEARCH &INNOVATION OUTREACH SUPF

Professor Shyam

Gollakota receives 2024

. -

ic [D Elements Console Sources Network Performance Memory Application Security Lighthouse Recorder P
@ @ Y, O\ O Preserve log (O Disable cache No throttling ¥ ”:‘E i, ‘i,

Y Filter O Invert 1 More filters ¥ All Fetch/XHR | Doc | CSS | JS | Font Img @ Media | Manifest WS | Wasm

200 ms 400 ms 600 ms 800 ms 1000 ms 1200 ms 1400 ms 1600 ms 1800 ms 2000 ms
Name Status Domain Type Initiator
= homepage-ableist-chatgpt-solen-feyissa-Aj7cDaR6QXs-unsplash-gree... 200 www-cse-managed... jpeg (index):596
=+ homepage-su-in-lee-ho-am-prize-purple-1800px.jpg 200 www-cse-managed... jpeg (index):596
[collect?v=18_v=j101&a=11382659898&t=pageviewd_s=18&d...206780... 200 www.google-analyt... xhr analytics.js:36
[©] async-ads.js 200 cse.google.com script cse_element
branding.png 200 www.google.com png cse element

| generate_204 204 clients1.google.com text/plain cse_element

30 /53 reauests =~ 690 kB / 734 kB transferred = 5.6 MB /8.5 MB resources = Finish:2.02s = DOMContentLoaded: 1.68's = Load: 2.61s 3

W UNIVERSITY of WASHINGTON L25: Introduction to Concurrency CSE333, Autumn 2024

Administrivia

’0

+» Ex16 due Monday!

«» HW4 has an abbreviated timeline!

()

" Median completion time was 16h

Learning is supposed to be hard

L)

0’0

= Butit's not supposed to cause suffering. It's ok to ask for help
when things are too hard — many of your peers already have!

L)

*

About HW3 in particular ...

= Just 1 hw out of 4, and homeworks are "only" 35% of your grade

0

" This class does not attempt to "fit a curve" — if a few peers do
well, it doesn't mean that you will do poorly

W UNIVERSITY of WASHINGTON L25: Introduction to Concurrency CSE333, Autumn 2024

Lecture Outline

+» Understanding Concurrency

+ Concurrent Programming Styles
" Threads vs. processes

= Asynchronous or non-blocking 1/0

- aka “Event-driven programming”

W UNIVERSITY of WASHINGTON L25: Introduction to Concurrency CSE333, Autumn 2024

Building a Web Search Engine

+ We have:

= A web index
- A map from <word> to <list of documents containing the word>
- This is probably sharded over multiple files
" A query processor
- Accepts a query composed of multiple words
- Looks up each word in the index

- Merges the result from each word into an overall result set

+ We need:

" Something that turns HTTP requests into well-formed queries

W UNIVERSITY of WASHINGTON L25: Introduction to Concurrency CSE333, Autumn 2024

Web Search Architecture

client
index
file
client
index r .
. > query client
file processor
index /
file

client

YW UNIVERSITY of WASHINGTON

L25: Introduction to Concurrency

Sequential Implementation

G

» Pseudocode for sequential query processor:

(doclist Lookup (string word) {
bucket = hash (word);

hitlist = file.read (bucket);
foreach hit in hitlist {

doclist.append(file.read(hit));

}

return doclist;

}

main () {
while (1) {

string query words[] = GetNextQuery ()
results = Lookup (query words[0]);
foreach word in query[l..n] {

results = results.intersect (Lookup (word)) ;

}

Display (results);
}

CSE333, Autumn 2024

L25: Introduction to Concurrency

=
O
T.
)
z.
T
v
<
=
S
=
v
o
[S&]
=
=z,
=)

: @ Multi-Word Query

Execution Timeline

[
() AxondaxsN3I=®D

O/I YaIomisu

() Aetdsta

() 30®sI=3uUuT S]1TNsSaI

O/I STP

() dnyoor

() 30®sI=3uUuT S]1TNsSaI

O/I STP

() dnyoorT

O/I ¥STP

() dnyoor

O/I 3Iomisu

() AxzondaxsN3Ie®D
() uteuw

query

YW UNIVERSITY of WASHINGTON L25: Introduction to Concurrency

What About I/O-caused Latency?

CSE333, Autumn 2024

+ Jeff Dean’s “Numbers Everyone Should Know” (LADIS ‘09)

+

Numbers Everyone Should Know
L1l cache reference OIS In'S
Branch mispredict Sllints
L2 cache reference 7 ns
Mutex lock/unlock LI gl
Main memory reference 100 ns
Compress 1K bytes with Zippy 10,000 ns
Send 2K bytes over 1 Gbps network 20,000 ns
Read 1 MB sequentially from memory i VR (010 o=
Round trip within same datacenter S ORORINnts
Disk seek 1L0) - (000 - @00 @E
= Read 1 MB sequentially from network 10,000,000 ns
Read 1 MB sequentially from disk 30,000,000 ns
Send packet CA->Netherlands->CA ILS(0) 4 @005 OX0) S
Google -

10

W UNIVERSITY of WASHINGTON L25: Introduction to Concurrency CSE333, Autumn 2024

Execution Timeline: To Scale

@) @)
~ ~
@) @) @)
H NG NG g H
v — — — v
Y G o0 0
Vs iLYa 4
(3) 0 0 0 (33
D — - — D
0 O O O 0
— - -
o
-
(v}
&
______________________________ >
time

11

W UNIVERSITY of WASHINGTON L25: Introduction to Concurrency CSE333, Autumn 2024

Sequential Queries — Simplified

Only one I/0 request at
The CPU is idle most a time is “in flight”

of the time! /

(picture not to scale)

Queries don’t run until
earlier queries finish

12

W UNIVERSITY of WASHINGTON L25: Introduction to Concurrency CSE333, Autumn 2024

Sequential Queries: To Scale

13

W UNIVERSITY of WASHINGTON L25: Introduction to Concurrency CSE333, Autumn 2024

Sequential Can Be Inefficient

+» Only one query is being processed at a time
= All other queries queue up behind the first one

+» The CPU is idle most of the time
" |t is blocked waiting for I/O to complete

- Disk I/O can be very, very slow

+» At most one |/O operation is in flight at a time
= Missed opportunities to speed I/O up

- Separate devices in parallel, better scheduling of a single device, etc.

14

W UNIVERSITY of WASHINGTON L25: Introduction to Concurrency CSE333, Autumn 2024

Concurrency

+ A version of the program that executes multiple tasks
simultaneously

= Example: Our web server could execute multiple queries at the
same time

- While one is waiting for I/O, another can be executing on the CPU
= Example: Execute queries one at a time, but issue I/O requests
against different files/disks simultaneously

-« Could read from several index files at once, processing the 1/0 results
as they arrive

+» Concurrency = parallelism

= Parallelism is when multiple CPUs work simultaneously on 1 job

15

W UNIVERSITY of WASHINGTON L25: Introduction to Concurrency CSE333, Autumn 2024

A Concurrent Implementation

+» Use multiple threads or processes

= As a query arrives, fork a new thread (or process) to handle it

- The thread reads the query from the console, issues read requests
against files, assembles results and writes to the console

- The thread uses blocking 1/O; the thread alternates between
consuming CPU cycles and blocking on I/O

% The OS context switches between threads/processes
= While one is blocked on 1I/O, another can use the CPU

= Multiple threads’ I/O requests can be issued at once

16

W UNIVERSITY of WASHINGTON L25: Introduction to Concurrency CSE333, Autumn 2024

Lecture Outline

+» Understanding Concurrency

+ Concurrent Programming Styles
" Threads vs. processes

= Asynchronous or non-blocking 1/0

- aka “Event-driven programming”

17

W UNIVERSITY of WASHINGTON L25: Introduction to Concurrency CSE333, Autumn 2024

@ Poll Everywhere pollev.com/uwcse333

+» To implement a “process”, the operating system gives us:
= Resources such as file handles and sockets
= (Call stack + registers to support (eg, PC, SP)

= Virtual memory (page tables, TLBs, etc ...)

+ If we want concurrency, what is the “minimal set” of the
above list that we need to execute a single line of code?

“Worker” 1 “Worker” 2

bucket = hash (word) :; foreach hit in hitlist {
hitlist = file.read (bucket); doclist.append(file.read (hit));
}

18

L25: Introduction to Concurrency CSE333, Autumn 2024

YW UNIVERSITY of WASHINGTON

Introducing Threads

+ Separate the concept of a process from an individual

“thread of control”
= Usually called a thread (or a lightweight process), this is a
sequential execution stream within a process

— thread

% In most modern OS’s:
= Process: address space, OS resources/process attributes
" Thread: stack, stack pointer, program counter, registers

" Threads are the unit of scheduling and processes are their
containers; every process has at least one thread running in it
20

W UNIVERSITY of WASHINGTON L25: Introduction to Concurrency CSE333, Autumn 2024

Threads

+» Threads were formerly called “lightweight processes”

" They execute concurrently like processes
- OS’s often treat them, not processes, as the unit of scheduling

- Parallelism for free! If you have multiple CPUs/cores, can run them
simultaneously

= Unlike processes, threads cohabitate the same address space

- Threads within a process see the same heap and globals and can
communicate with each other through variables and memory

— But can interfere with each other — need synchronization for shared
resources

- Each thread has its own stack

+» What does the OS do when you switch processes?

" How does that differ from switching threads?

21

W UNIVERSITY of WASHINGTON L25: Introduction to Concurrency CSE333, Autumn 2024

Multithreaded Pseudocode

(main() { B
while (1) {
string query words[] = GetNextQuery ()
ForkThread (ProcessQuery ()) ;
}
\} J

[doclist Lookup (string word) {
bucket = hash (word);
hitlist = file.read (bucket);
foreach hit in hitlist
doclist.append(file.read (hit));
return doclist;

}

ProcessQuery () {
results = Lookup (query words[0]);
foreach word in query[l..n]
results = results.intersect (Lookup (word)) ;

Display (results);

22

W UNIVERSITY of WASHINGTON L25: Introduction to Concurrency CSE333, Autumn 2024

Multithreaded Queries — Simplified

query 3

query 2

query 1

23

W UNIVERSITY of WASHINGTON L25: Introduction to Concurrency CSE333, Autumn 2024

Why Threads?

+» Advantages:
" You (mostly) write sequential-looking code

" Threads can run in parallel if you have multiple CPUs/cores

+ Disadvantages:
= |f threads share data, you need locks or other synchronization
- Very bug-prone and difficult to debug

® Threads can introduce overhead

- Lock contention, context switch overhead, and other issues

" Need language support for threads

24

W UNIVERSITY of WASHINGTON L25: Introduction to Concurrency CSE333, Autumn 2024

Alternative: Processes

o0

o0

o0

What if we forked processes instead of threads?

Advantages:
" No shared memory between processes

"= No need for language support; OS provides “fork”

Disadvantages:

" More overhead than threads during creation and context
switching

= Cannot easily share memory between processes — typically
communicate through the file system

25

W UNIVERSITY of WASHINGTON L25: Introduction to Concurrency CSE333, Autumn 2024

Threads vs. Processes

_ R/

+ Before creating a thread

g@m 'aackparent
" One thread of execution running
in the address space
T - One PC, stack, SP

T TR E " That main thread invokes a

' function to create a new thread
Heap (malloc/free) - Typically pthread create ()
Read/Write Segments
.data, .bss

Read-Only Segments

a
|—}))C[EJEI?@IW@.text, .rodata

26

W UNIVERSITY of WASHINGTON L25: Introduction to Concurrency CSE333, Autumn 2024

Threads vs. Processes

SP

pakent

SﬂFZth

pthread create()

R

PGy
oy c e

pakent

27

W UNIVERSITY of WASHINGTON L25: Introduction to Concurrency CSE333, Autumn 2024

SP T

pakent

Threads vs. Processes

pakent

fork ()

Pty =

28

W UNIVERSITY of WASHINGTON L25: Introduction to Concurrency CSE333, Autumn 2024

Lecture Outline

+» Understanding Concurrency

+ Concurrent Programming Styles

" Threads vs. processes

= Asynchronous or non-blocking 1/0

- aka “Event-driven programming”

29

YW UNIVERSITY of WASHINGTON L25: Introduction to Concurrency

CSE333, Autumn 2024

Event-Driven Programming

+ Your program is structured as an event-loop

rvoid dispatch (task, event) {
switch (task.state) {
case READING FROM CONSOLE:
query words = event.data;
async_read (index, query words([0]);
task.state = READING FROM INDEX;
return;
case READING FROM INDEX:

}

while (1) {
event = 0S.GetNextEvent ()
task = lookup (event) ;
dispatch (task, event);

30

W UNIVERSITY of WASHINGTON L25: Introduction to Concurrency CSE333, Autumn 2024

Event-Driven Programming

% Change how we do 1/0!

+ Your program begins processing a query

"= When your program needs to read data to make further progress,
it registers interest in the data with the OS and then switches to a
different query

" The OS handles the details of issuing the read on the disk, or
waiting for data from the console (or other devices, like the
network)

" When data becomes available, the OS lets your program know via
a new event

31

W UNIVERSITY of WASHINGTON L25: Introduction to Concurrency CSE333, Autumn 2024

One Way to Think About It

«» Threaded code:

= OS and thread scheduler switch between threads for you

= Each thread executes its task sequentially, and per-task state is naturally
stored in the thread’s stack

+«» Event-driven code:

= You (or your framework) are the scheduler

- You (or your framework) also manages scheduling-related resources, such as
the connection e __Dk“ N OUE
a)@ sexdocode,
"= You have to bundle up task state into continudtions (data structures

describing what-to-do-next); tasks do not have their own stacks

= .. what if your logic required multiple steps?

Read from one index, then read from another index, then ...

32

