
CSE333, Autumn 2024L23: Server-side Programming

Server-side Programming
CSE 333

Instructor: Hannah C. Tang

Teaching Assistants:

Deeksha Vatwani Hannah Jiang Jen Xu

Justin Tysdal Leanna Nguyen Sayuj Shahi

Wei Wu Yiqing Wang Youssef Ben Taleb

CSE333, Autumn 2024L23: Server-side Programming

pollev.com/uwcse333

❖ Consider the following call to read(). Assuming we

want to read exactly NUM_BYTES, under what

circumstances do we need to call read() again?

2

// Read exactly NUM_BYTES from fd

char buf[NUM_BYTES];

int res = read(fd, buf, NUM_BYTES);

CSE333, Autumn 2024L23: Server-side Programming

Administrivia

❖ HW3 due tomorrow, with late days until Thursday

❖ Ex15 due on Wednesday

❖ HW4 spec and starter code released Friday(ish)

❖ Next week Wednesday, "lecture" is actually section

▪ This is a real section, not a pre-holiday section , with

TAs, worksheets, etc

3

CSE333, Autumn 2024L23: Server-side Programming

Lecture Outline

❖ Servers

❖ TCP Connections for Servers

5

CSE333, Autumn 2024L23: Server-side Programming

Servers

❖ Servers can have multiple IP addresses (“multihoming”)

▪ Usually have at least one externally-visible IP address, as well as a

local-only address (127.0.0.1)

❖ The goals of a server socket are different than a client

socket

▪ Want to bind the socket to a particular port of one or more IP

addresses of the server

▪ Want to allow multiple clients to connect to the same port

• OS uses client IP address and port numbers to direct I/O to the

correct server file descriptor

6

CSE333, Autumn 2024L23: Server-side Programming

Socket API: Server TCP Connection

❖ Similar to clients', but additional steps in the middle:

1) Figure out the IP address and port on which to listen

2) Create a socket

3) bind() the socket to the address(es) and port

4) Tell the server socket to listen() for incoming clients

5) accept() a client's connection by creating a socket for that client

6) .read() and write() data using the client's socket

7) close() the client's socket

8) close() the server's socket

8

CSE333, Autumn 2024L23: Server-side Programming

Lecture Outline

❖ Servers

❖ TCP Connections for Servers

9

CSE333, Autumn 2024L23: Server-side Programming

Step 1: Figure out IP address(es) & Port

❖ Step 1: getaddrinfo() invocation may or may not be

needed (but we’ll use it)

▪ Do you know your IP address(es) already?

• Static vs. dynamic IP address allocation

• Even if the machine has a static IP address, don’t wire it into the code

– better to look it up dynamically or use a configuration file

▪ Can request listen on all local IP addresses by passing NULL as

hostname and setting AI_PASSIVE in hints.ai_flags

• Effect is to use address 0.0.0.0 (IPv4) or :: (IPv6)

10

CSE333, Autumn 2024L23: Server-side Programming

Step 2: Create a Socket

❖ Step 2: socket() call is same as before

▪ Can directly use constants or fields from result of

getaddrinfo()

▪ Recall that this just returns a file descriptor – IP address and port

are not associated with socket yet

11

CSE333, Autumn 2024L23: Server-side Programming

Step 3: Bind the Socket

❖

▪ Looks nearly identical to connect()!

▪ Returns 0 on success, -1 on error

❖ Some specifics for addr:

▪ Address family: AF_INET or AF_INET6

• What type of IP connections can we accept?

• POSIX systems can handle IPv4 clients via IPv6 so use AF_INET6 ☺

• AF_UNSPEC doesn’t work as expected: it can bind to v4-only socket

▪ Port: port in network byte order (htons() is handy)

▪ Address: specify particular IP address or any IP address

• “Wildcard address” – INADDR_ANY (IPv4), in6addr_any (IPv6)

12

int bind(int sockfd, const struct sockaddr* addr,

socklen_t addrlen);

CSE333, Autumn 2024L23: Server-side Programming

Step 4: Listen for Incoming Clients

❖

▪ Tells the OS that the socket is a listening socket that clients can

connect to

▪ backlog: maximum length of connection queue

• Gets truncated, if necessary, to defined constant SOMAXCONN

• The OS will refuse new connections once queue is full until server

accept()s them (removing them from the queue)

▪ Returns 0 on success, -1 on error

▪ Clients can start connecting to the socket as soon as listen()

returns

• Server can’t use a connection until you accept() it

13

int listen(int sockfd, int backlog);

CSE333, Autumn 2024L23: Server-side Programming

Example #1

❖ See server_bind_listen.cc

▪ Takes in a port number from the command line

▪ Opens a server socket, prints info, then listens for connections for

20 seconds

• Can connect to it using netcat (nc)

15

CSE333, Autumn 2024L23: Server-side Programming

Step 5: Accept a Client Connection

❖

▪ Returns a new (different from sockfd), active, ready-to-use

socket connected to a specific client (or -1 on error)

• sockfd must have been created, bound, and listening

• Pulls a queued connection or waits for an incoming one

▪ addr and addrlen are output parameters

• *addrlen should initially be set to sizeof(*addr), gets

overwritten with the size of the client address

• Address information of client is written into *addr

– Use inet_ntop() to get the client’s printable IP address

– Use getnameinfo() to do a reverse DNS lookup on the client

16

int accept(int sockfd, struct sockaddr* addr,

socklen_t* addrlen);

CSE333, Autumn 2024L23: Server-side Programming

Steps 6-8: read(), write(), and close()

❖ Step 6: Use new client-specific socket to interact with that

client

▪ Just calls to read() and read(), like we already know!

❖ Step 7: When done with that specific client, close()

their socket to terminate their TCP connection

▪ Server remains available to new clients if you don't close the

server's socket

❖ Step 8: When server is done with all serving, close()

the server socket to stop accepting any connections

17

CSE333, Autumn 2024L23: Server-side Programming

pollev.com/uwcse333

❖ We've used a tea shop as an analogy for setting up a

server connection

▪ Now, review your notes and extend the analogy to setting up a

client connection

18

CSE333, Autumn 2024L23: Server-side Programming

Example #2

❖ See server_accept_rw_close.cc

▪ Gets a port number from the command line

▪ Opens a server socket, prints info, then listens for connections

• Can connect to it using netcat (nc)

▪ Accepts connections as they come

▪ Echoes any data the client sends to it on stdout and also sends

it back to the client

19

CSE333, Autumn 2024L23: Server-side Programming

Something to Note

❖ Our server code is not concurrent

▪ Single thread of execution

▪ The thread blocks while waiting for the next connection

▪ The thread blocks waiting for the next message from the

connection

❖ A crowd of clients is, by nature, concurrent

▪ While our server is handling the next client, all other clients are

stuck waiting for it 

20

CSE333, Autumn 2024L23: Server-side Programming

Extra Exercise #1

❖ Write a program that:

▪ Creates a listening socket that accepts connections from clients

▪ Reads a line of text from the client

▪ Parses the line of text as a DNS name

▪ Does a DNS lookup on the name

▪ Writes back to the client the list of IP addresses associated with

the DNS name

▪ Closes the connection to the client

22

