
CSE333, Autumn 2024L19: C++ Inheritance II, Casting

C++ Inheritance II, Casting
CSE 333

Instructor: Hannah C. Tang

Teaching Assistants:

Deeksha Vatwani Hannah Jiang Jen Xu

Justin Tysdal Leanna Nguyen Sayuj Shahi

Wei Wu Yiqing Wang Youssef Ben Taleb

CSE333, Autumn 2024L19: C++ Inheritance II, Casting

pollev.com/uwcse333

❖ Whose Foo() is called?

Q1 Q2

A. B B

B. B D

C. C B

D. C D

E. We’re lost…

2

class A {

public:

virtual void Foo();

};

class B : public A {

public:

virtual void Foo();

};

class C : public B {

};

class D : public C {

public:

virtual void Foo();

};

class E : public C {

};

void Bar() {

B* b_ptr;

C c;

D d;

// Q1:

b_ptr = &c;

b_ptr->Foo();

// Q2:

b_ptr = &d;

b_ptr->Foo();

}

CSE333, Autumn 2024L19: C++ Inheritance II, Casting

Administrivia

❖ Back onto our exercise-per-lecture schedule

▪ Ex 12 released: file I/O with C++

❖ HW3 due in a 2.5 weeks

▪ Read the spec over the weekend

▪ Starter code will be released over the weekend

▪ Median completion time for 24sp: 19h

• (but stddev was substantially larger than the comparable HW2)

3

CSE333, Autumn 2024L19: C++ Inheritance II, Casting

Lecture Outline

❖ C++ Inheritance

▪ Static and Mixed Dispatches

▪ Abstract Classes

▪ Constructors, Destructors, and Assignment

❖ C++ Casting

❖ Reference: C++ Primer, Chapter 15

6

CSE333, Autumn 2024L19: C++ Inheritance II, Casting

What happens if we omit “virtual”?

❖ By default, without virtual, methods are dispatched statically

▪ At compile time, the compiler writes in a call to the address of the class’
method in the generated code .text segment

• Based on the compile-time visible type of the called code (callee)

▪ This is different than Java

7

class Derived : public Base { ... };

int main(int argc, char** argv) {

Derived d;

Derived* dp = &d;

Base* bp = &d;

dp->foo();

bp->foo();

return 0;

}

Derived::foo()

...

Base::foo()

...

CSE333, Autumn 2024L19: C++ Inheritance II, Casting

Static Dispatch Example

❖ Removed virtual on methods:

8

DividendStock dividend;

DividendStock* ds = ÷nd;

Stock* s = ÷nd;

// Calls DividendStock::GetMarketValue()

ds->GetMarketValue();

// Calls Stock::GetMarketValue()

s->GetMarketValue();

// Calls Stock::GetProfit(), since that method is inherited.

// Stock::GetProfit() calls Stock::GetMarketValue().

ds->GetProfit();

// Calls Stock::GetProfit().

// Stock::GetProfit() calls Stock::GetMarketValue().

s->GetProfit();

double Stock::GetMarketValue() const;

double Stock::GetProfit() const;

Stock.h

CSE333, Autumn 2024L19: C++ Inheritance II, Casting

virtual is “sticky”

❖ If X::f() is declared virtual, then a vtable will be

created for class X and for all of its subclasses

▪ The vtables will include function pointers for (the correct) f

❖ f() will be called using dynamic dispatch even if

overridden in a derived class without the virtual

keyword

▪ Good style to help the reader and avoid bugs by using override

• Style guide controversy, if you use override should you use

virtual in derived classes? Recent style guides say just use

override, but you’ll sometimes see both, particularly in older code

9

CSE333, Autumn 2024L19: C++ Inheritance II, Casting

Why Not Always Use virtual?

❖ Two (fairly uncommon) reasons:

▪ Efficiency:

• Non-virtual function calls are a tiny bit faster (no indirect lookup)

• A class with no virtual functions has objects without a vptr field

▪ Control:

• If f() calls g() in class X and g is not virtual, we’re guaranteed to

call X::g() and not g() in some subclass

– Particularly useful for framework design

❖ In Java, all methods are virtual, except static class

methods, which aren’t associated with objects

❖ In C++ and C#, you can pick what you want

▪ Omitting virtual can cause obscure bugs

10

CSE333, Autumn 2024L19: C++ Inheritance II, Casting

Mixed Dispatch

❖ Which function is called is a mix of both compile time and

runtime decisions as well as how you call the function

▪ If called on an object (e.g. obj.Fcn()), usually optimized into a

hard-coded function call at compile time

▪ If called via a pointer or reference:

DeclaredT *ptr = new ActualT;

ptr->Fcn(); // which version is called?

11

Static dispatch – call
DeclaredT::fcn()

Is Fcn()
defined in

DeclaredT

(either locally or
inherited)?

Is DeclaredT::Fcn()
marked virtual in

DeclaredT or in one of
its superclasses?

Error

Dynamic dispatch!
Call most-derived
version of fcn()

visible in ActualT

Yes Yes

NoNo

CSE333, Autumn 2024L19: C++ Inheritance II, Casting

Mixed Dispatch Example

13

class A {

public:

void m1() { cout << "a1"; }

virtual void m2() { cout << "a2"; }

};

class B : public A {

public:

void m1() { cout << "b1"; }

void m2() { cout << "b2"; }

};

void main(int argc,

char** argv) {

A a;

B b;

A* a_ptr_a = &a;

A* a_ptr_b = &b;

B* b_ptr_a = &a;

B* b_ptr_b = &b;

a_ptr_a->m1(); //

a_ptr_a->m2(); //

a_ptr_b->m1(); //

a_ptr_b->m2(); //

b_ptr_b->m1(); //

b_ptr_b->m2(); //

}

mixed.cc

a1

a2

a1

b2

b1

b2

CSE333, Autumn 2024L19: C++ Inheritance II, Casting

Mixed Dispatch Example

14

class A {

public:

// m1 will use static dispatch

void m1() { cout << "a1"; }

// m2 will use dynamic dispatch

virtual void m2() { cout << "a2"; }

};

class B : public A {

public:

void m1() { cout << "b1, "; }

// m2 is still virtual by default

void m2() { cout << "b2"; }

};

void main(int argc,

char** argv) {

A a;

B b;

A* a_ptr_a = &a;

A* a_ptr_b = &b;

B* b_ptr_a = &a;

B* b_ptr_b = &b;

a_ptr_a->m1(); // a1

a_ptr_a->m2(); // a2

a_ptr_b->m1(); // a1

a_ptr_b->m2(); // b2

b_ptr_b->m1(); // b1

b_ptr_b->m2(); // b2

}

mixed.cc

CSE333, Autumn 2024L19: C++ Inheritance II, Casting

pollev.com/uwcse333

❖ Whose Foo() is called?

Q1 Q2

A A

A B

D A

D B

We’re lost…

16

class A {

public:

void Foo();

};

class B : public A {

public:

virtual void Foo();

};

class C : public B {

};

class D : public C {

public:

void Foo();

};

class E : public C {

};

void Bar() {

D d;

E e;

A* a_ptr = &d;

C* c_ptr = &e;

// Q1:

a_ptr->Foo();

// Q2:

c_ptr->Foo();

}

test.cc

CSE333, Autumn 2024L19: C++ Inheritance II, Casting

Lecture Outline

❖ C++ Inheritance

▪ Static and Mixed Dispatches

▪ Abstract Classes

▪ Constructors, Destructors, and Assignment

❖ C++ Casting

❖ Reference: C++ Primer, Chapter 15

17

CSE333, Autumn 2024L19: C++ Inheritance II, Casting

Abstract Classes

❖ Sometimes we want to include a function in a class but

only implement it in derived classes

▪ In Java, we would use an abstract method

▪ In C++, we use a “pure virtual” function

• Example: virtual string noise() = 0;

❖ A class containing any pure virtual methods is abstract

▪ You can’t create instances of an abstract class

▪ Extend abstract classes and override methods to use them

❖ A class containing only pure virtual methods is the same

as a Java interface

▪ Pure type specification without implementations

virtual string noise() = 0;

18

CSE333, Autumn 2024L19: C++ Inheritance II, Casting

Lecture Outline

❖ C++ Inheritance

▪ Static and Mixed Dispatches

▪ Abstract Classes

▪ Constructors, Destructors, and Assignment

❖ C++ Casting

❖ Reference: C++ Primer, Chapter 15

19

CSE333, Autumn 2024L19: C++ Inheritance II, Casting

Derived-Class Objects

❖ A derived object contains “subobjects” corresponding to

the data members inherited from each base class

▪ No guarantees about how these are laid out in memory (not even

contiguousness between subobjects)

❖ Conceptual structure of DividendStock object:

members inherited
from Stock

symbol_

total_shares_

total_cost_

current_price_

members defined by
DividendStock

dividends_

20

CSE333, Autumn 2024L19: C++ Inheritance II, Casting

Constructors and Inheritance

❖ A derived class does not inherit the base class’

constructor

▪ The derived class must have its own constructor

▪ A synthesized default constructor for the derived class first

invokes the default constructor of the base class and then

initializes the derived class’ member variables

• Compiler error if the base class has no default constructor

▪ The base class constructor is invoked before the constructor of

the derived class

• You can use the initialization list of the derived class to specify which

base class constructor to use

21

CSE333, Autumn 2024L19: C++ Inheritance II, Casting

Constructor Examples

class Base { // no default ctor

public:

Base(int y) : y(y) { }

int y;

};

// Compiler error when you try to

// instantiate a Der1, as the

// synthesized default ctor needs

// to invoke Base's default ctor.

class Der1 : public Base {

public:

int z;

};

class Der2 : public Base {

public:

Der2(int y, int z)

: Base(y), z(z) { }

int z;

};

badctor.cc

// has default ctor

class Base {

public:

int y;

};

// works now

class Der1 : public Base {

public:

int z;

};

// still works

class Der2 : public Base {

public:

Der2(int z) : z(z) { }

int z;

};

goodctor.cc

22

CSE333, Autumn 2024L19: C++ Inheritance II, Casting

Destructors and Inheritance

❖ Destructor of a derived

class:

▪ First runs body of the dtor

▪ Then invokes of the dtor

of the base class

❖ Static dispatch of

destructors is almost

always a mistake!

▪ Good habit to always

define a dtor as virtual

• Empty body if there’s

no work to do

class Base {

public:

Base() { x = new int; }

~Base() { delete x; }

int* x;

};

class Der1 : public Base {

public:

Der1() { y = new int; }

~Der1() { delete y; }

int* y;

};

void foo() {

Base* b0ptr = new Base;

Base* b1ptr = new Der1;

delete b0ptr; // OK

delete b1ptr; // leaks Der1::y

}

baddtor.cc

23

CSE333, Autumn 2024L19: C++ Inheritance II, Casting

Assignment and Inheritance

❖ C++ allows you to assign

the value of a derived

class to an instance of

a base class

▪ Known as object slicing

• It’s legal since b=d passes

type checking rules

• But b doesn’t have space

for any extra fields in d

class Base {

public:

Base(int x) : x_(x) { }

int x_;

};

class Der1 : public Base {

public:

Der1(int y) : Base(16), y_(y) { }

int y_;

};

void foo() {

Base b(1);

Der1 d(2);

d = b; // compiler error

b = d; // what happens to y_?

}

slicing.cc

24

CSE333, Autumn 2024L19: C++ Inheritance II, Casting

STL and Inheritance

❖ Recall: STL containers store copies of values

▪ What happens when we want to store mixes of object types in a

single container? (e.g. Stock and DividendStock)

▪ You get sliced

25

#include <list>

#include "Stock.h"

#include "DividendStock.h"

int main(int argc, char** argv) {

Stock s;

DividendStock ds;

list<Stock> li;

li.push_back(s); // OK

li.push_back(ds); // OUCH!

return 0;

}

CSE333, Autumn 2024L19: C++ Inheritance II, Casting

STL and Inheritance

❖ Instead, store pointers to heap-allocated objects in STL

containers

▪ No slicing! ☺

▪ sort() does the wrong thing

▪ You have to remember to delete your objects before

destroying the container

• Smart pointers!

26

CSE333, Autumn 2024L19: C++ Inheritance II, Casting

Lecture Outline

❖ C++ Inheritance

▪ Static and Mixed Dispatches

▪ Abstract Classes

▪ Constructors, Destructors, and Assignment

❖ C++ Casting

❖ Reference: C++ Primer §4.11.3, 19.2.1

27

CSE333, Autumn 2024L19: C++ Inheritance II, Casting

Explicit Casting in C

❖ Simple syntax: lhs = (new_type) rhs;

❖ Used to:

▪ Convert between pointers of arbitrary type

• Don’t change the data, but treat differently

▪ Forcibly convert a primitive type to another

• Actually changes the representation

❖ You can still use C-style casting in C++, but that uses one

notation for different purposes

28

lhs = (new_type) rhs;

CSE333, Autumn 2024L19: C++ Inheritance II, Casting

Casting in C++

❖ C++ provides an alternative casting style that is more

informative:

▪ static_cast<to_type>(expression)

▪ dynamic_cast<to_type>(expression)

▪ const_cast<to_type>(expression)

▪ reinterpret_cast<to_type>(expression)

❖ Always use these in C++ code

▪ Intent is clearer

▪ Easier to find in code via searching

29

CSE333, Autumn 2024L19: C++ Inheritance II, Casting

static_cast

❖ static_cast can convert:

▪ Pointers to classes of related type

• Compiler error if classes are not related

• Dangerous to cast down a class hierarchy

▪ Non-pointer conversion

• e.g. float to int

❖ static_cast is

checked at compile time

30

class A {

public:

int x;

};

class B {

public:

float x;

};

class C : public B {

public:

char x;

};

void foo() {

B b; C c;

// compiler error

A* aptr = static_cast<A*>(&b);

// OK

B* bptr = static_cast<B*>(&c);

// compiles, but dangerous

C* cptr = static_cast<C*>(&b);

}

staticcast.cc

CSE333, Autumn 2024L19: C++ Inheritance II, Casting

dynamic_cast

❖ dynamic_cast can convert:

▪ Pointers to classes of related type

▪ References to classes of related type

❖ dynamic_cast is checked at both

compile time and

run time

▪ Casts between

unrelated classes fail

at compile time

▪ Casts from base to

derived fail at run

time if the pointed-to

object is not the

derived type
31

void bar() {

Base b; Der1 d;

// OK (run-time check passes)

Base* bptr = dynamic_cast<Base*>(&d);

assert(bptr != nullptr);

// OK (run-time check passes)

Der1* dptr = dynamic_cast<Der1*>(bptr);

assert(dptr != nullptr);

// Run-time check fails, returns nullptr

bptr = &b;

dptr = dynamic_cast<Der1*>(bptr);

assert(dptr != nullptr);

}

dynamiccast.cc
class Base {

public:

virtual void foo() { }

float x;

};

class Der1 : public Base {

public:

char x;

};

CSE333, Autumn 2024L19: C++ Inheritance II, Casting

const_cast

❖ const_cast adds or strips const-ness

▪ Dangerous (!)

32

void foo(int* x) {

*x++;

}

void bar(const int* x) {

foo(x); // compiler error

foo(const_cast<int*>(x)); // succeeds

}

int main(int argc, char** argv) {

int x = 7;

bar(&x);

return 0;

}

CSE333, Autumn 2024L19: C++ Inheritance II, Casting

reinterpret_cast

❖ reinterpret_cast casts between incompatible types

▪ Low-level reinterpretation of the bit pattern

▪ e.g. storing a pointer in an int, or vice-versa

• Works as long as the integral type is “wide” enough

▪ Converting between incompatible pointers

• Dangerous (!)

• This is used (carefully) in hw3

33

CSE333, Autumn 2024L19: C++ Inheritance II, Casting

Implicit Conversion

❖ The compiler tries to infer some kinds of conversions

▪ When types are not equal and you don’t specify an explicit cast,

the compiler looks for an acceptable implicit conversion

34

void bar(std::string x);

void foo() {

int x = 5.7; // conversion, float -> int

bar("hi"); // conversion, (const char*) -> string

char c = x; // conversion, int -> char

}

CSE333, Autumn 2024L19: C++ Inheritance II, Casting

Sneaky Implicit Conversions

❖ (const char*) to string conversion?

▪ If a class has a constructor with a single parameter, the compiler

will exploit it to perform implicit conversions

▪ At most, one user-defined implicit conversion will happen

• Can do int→ Foo, but not int→ Foo→ Baz

35

class Foo {

public:

Foo(int x) : x(x) { }

int x;

};

int Bar(Foo f) {

return f.x;

}

int main(int argc, char** argv) {

return Bar(5); // equivalent to return Bar(Foo(5));

}

CSE333, Autumn 2024L19: C++ Inheritance II, Casting

Avoiding Sneaky Implicits

❖ Declare one-argument constructors as explicit if you

want to disable them from being used as an implicit

conversion path

▪ Usually a good idea

36

class Foo {

public:

explicit Foo(int x) : x(x) { }

int x;

};

int Bar(Foo f) {

return f.x;

}

int main(int argc, char** argv) {

return Bar(5); // compiler error

}

CSE333, Autumn 2024L19: C++ Inheritance II, Casting

Extra Exercise #1

❖ Design a class hierarchy to represent shapes

▪ e.g. Circle, Triangle, Square

❖ Implement methods that:

▪ Construct shapes

▪ Move a shape (i.e. add (x,y) to the shape position)

▪ Returns the centroid of the shape

▪ Returns the area of the shape

▪ Print(), which prints out the details of a shape

37

CSE333, Autumn 2024L19: C++ Inheritance II, Casting

Extra Exercise #2

❖ Implement a program that uses Extra Exercise #1 (shapes

class hierarchy):

▪ Constructs a vector of shapes

▪ Sorts the vector according to the area of the shape

▪ Prints out each member of the vector

❖ Notes:

▪ Avoid slicing!

▪ Make sure the sorting works properly!

38

