YW UNIVERSITY of WASHINGTON L18: C++ Inheritance |

CSE333, Autumn 2024

C++ Inheritance |
CSE 333

Instructor: Hannah C. Tang

Teaching Assistants:

Deeksha Vatwani Hannah Jiang
Justin Tysdal Leanna Nguyen
Wei Wu Yiging Wang

Jen Xu
Sayuj Shahi

Youssef Ben Taleb

W UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Autumn 2024

Lecture Outline

+ C++ Inheritance
= Roadmap for Next Two Lectures
" Conceptual Review
= Dynamic Dispatch

= vtables and vptr

+ Reference: C++ Primer, Chapter 15

YW UNIVERSITY of WASHINGTON

L18: C++ Inheritance |

CSE333, Autumn 2024

Overview of Next Two Lectures

« C++ inheritance

= Review of basic idea (pretty much the same as in Java)

= What's different in C++ (compared to Java)

- Static vs dynamic dispatch - virtual functions and vtables (i.e.,
dynamic dispatch) are optional

- Pure virtual functions, abstract classes, why no Java “interfaces”

- Assignment slicing, using class hierarchies with STL

« Casts in C++

+» Reference: C++ Primer, ch. 15

W UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Autumn 2024

Overview of Next Two Lectures

+» C++ inheritance
= Review of basic idea (pretty much the same as in Java)

= What's different in C++ (compared to Java)

mmmm) - Static vs dynamic dispatch - virtual functions and vtables (i.e.,
dynamic dispatch) are optional

&

o0

D)

+» Reference: C++ Primer, ch. 15

" (read it! a lot of how C++ does this looks like Java, but details
differ)

W UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Autumn 2024

Stock Portfolio Example

+ A portfolio represents a person’s financial investments
= Each asset has a cost (i.e. how much was paid for it) and a market
value (i.e. how much it is worth)

- The difference between the cost and market value is the profit (or
loss)

= Different assets compute market value in different ways

- A stock that you own has a ticker symbol (e.g. “GOOG”), a number of
shares, share price paid, and current share price

- A dividend stock is a stock that also has dividend payments

- Cash is an asset that never incurs a profit or loss

W UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Autumn 2024

Desigh Without Inheritance

+ One class per asset type:

symbol symbol amount

=
total shares il total shares GetMarketvalue ()
total cost total cost
current price current price
GetMarketValue () dividends_
GetProfit () GetMarketValue ()
GetCost () GetProfit ()
GetCost ()

" Redundant!

= Cannot treat multiple investments together

- e.g. can’t have an array or vector of different assets

+ See samplecodein initial design/

W UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Autumn 2024

Lecture Outline

+ C++ Inheritance
= Roadmap for Next Two Lectures
= Conceptual Review
= Dynamic Dispatch

= vtables and vptr

+ Reference: C++ Primer, Chapter 15

10

W UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Autumn 2024

Inheritance

+ A parent-child “is-a” relationship between classes
= A child (derived class) extends a parent (base class)
+ Benefits:
= Code reuse
- Children can automatically inherit code from parents
= Polymorphism
- Ability to redefine existing behavior but preserve the interface

« Children can override the behavior of the parent

- Others can make calls on objects without knowing which part of the
inheritance tree it is in

= Extensibility

« Children can add behavior

11

W UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Autumn 2024

Terminology
Java C++
Superclass Base Class
Subclass Derived Class

+» Mean the same things. You’ll hear both.

12

YW UNIVERSITY of WASHINGTON

L18: C++ Inheritance |

Design With Inheritance

symbol
total_shares_
total_cost_

GetProfit ()
GetCost ()

Asset (abstract)

GetMarketValue ()
GetProfit ()
GetCost ()

current price_
GetMarketValue () DividendStock

symbol
total shares
total cost
current price
dividends

GetMarketValue ()
GetProfit ()
GetCost ()

CSE333, Autumn 2024

amount_

GetMarketValue ()

13

W UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Autumn 2024

Like Java: Access Modifiers

public: visible to all other classes

protected: visible to current class and its derived
classes

private: visible only to the current class

Use protected for class members only when
= (Class is designed to be extended by subclasses
= Subclasses must have access but clients should not be allowed

" (recall that C++ style guide says all data members should be
private; therefore your getters/setters must, minimally, be
protected)

14

CSE333, Autumn 2024

YW UNIVERSITY of WASHINGTON L18: C++ Inheritance |

Class Derivation List

+» Comma-separated list of classes to inherit from:

r#include "BaseClass.h"

\

class Name : public BaseClass {

¥)

\

" Focus on single inheritance, but multiple inheritance possible

+ Almost always you will want public inheritance

= Acts like extends doesin Java
= Any member that is non-private in the base class is the same in
the derived class; both interface and implementation inheritance

- Except that constructors, destructors, copy constructor, and

assignment operator are never inherited
15

YA UNIVERSITY of WASHINGTON

Back to Stocks

symbol
total_shares_
total_cost_

current_price_

GetMarketValue ()
GetProfit ()
GetCost ()

BASE

L18: C++ Inheritance |

DividendStock

symbol
total shares
total cost
current price
dividends

GetMarketValue ()
GetProfit ()
GetCost ()

DERIVED

CSE333, Autumn 2024

16

YA UNIVERSITY of WASHINGTON

Back to Stocks

L18: C++ Inheritance |

CSE333, Autumn 2024

Stock ..
symbol dividends
- symbol —
total_ shares__ total shares
total cost total cost_
3 current price .
current price_ — Zv : _<> - GetProfit ()
e arke atue L
GetMarketVIalue () Getprofit () 4= L - = GetCost ()
GetProfit () GetCost () 4= PayDividend ()
GetCost ()

« A derived class:
" |nherits the behavior and state (specification) of the base class
o some of the base class” member functions (opt.)

= Extends the base class with new member functions, variables
(opt.)

17

W UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Autumn 2024

Lecture Outline

+ C++ Inheritance
= Roadmap for Next Two Lectures
" Conceptual Review
" Dynamic Dispatch

= vtables and vptr

+ Reference: C++ Primer, Chapter 15

18

W UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Autumn 2024

Like Java: Dynamic Dispatch

+ Usually, when a derived function is available for an object, we
want the derived function to be invoked

= This requires a run time decision of what code to invoke
= This is similar to Java

2 W invoked on an object should be t@

derived function avcessible to the object’s visible type

Can determine what to invoke from the object itself

Example: PrintStock(Stock *s) { s->Print() }

Calls Print() function appropriate to Stock, DividendStock, etc. without
knowing the exact class of *s, other than it is some sort of Stock

So the Stock (DividendStock, etc.) object itself has to carry some sort of
information that can be used to decide which Print() to call

(see inherit-design/useasssets.cc)

19

W UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Autumn 2024

Requesting Dynamic Dispatch

« Prefix the member function declaration with the
virtual keyword

= Derived functions don’t need to repeat virtual, sinceit's
virtual in all subclasses, but was traditionally good style to do so

" This is how method calls work in Java (no virtual keyword needed)
" You almost always want functions to be virtual

+» override keyword (C++11)

= Tells compiler this method should be overriding an inherited
virtual function — always use if available

" Prevents overloading vs. overriding bugs
+ Both of these are technically optional in derived classes

= A virtual function is virtual in all subclasses as well

" Be consistent and follow local conventions
20

W UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Autumn 2024

Static vs Dynamic Types

+» Suppose we have a variable declared
T x
and a method call
Xx—>1 (params)

« There are two types associated with x:
= Static type: the declared type of x, which is T here

= Dynamic type: the actual type of the object *x, which will either
be T or some subclass (subtype) of T

- And this can change during execution if x is changed to point to
different objects with different (sub)types of T

21

W UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Autumn 2024

Obtaining Dynamic Dispatch

+ Static type (compile-type
type) must differ fromthe (o \
dynamiC type (aCtuaI #include "DividendStock.h"

runtime type of the Object) DividendStock dividend;
DividendStock* dp = ÷nd;

" Therefore, need to have some | Stock stock;
T . Stock* = ÷nd;
form of indirection (eg, a oeen sk Hyraen

pointer or reference) dp->GetMarketValue () ;
sp—->GetMarketValue () ;

stock.GetMarketValue () ;

&

« The member function in the
static type must be
declared virtual

D)

22

YW UNIVERSITY of WASHINGTON L18: C++ Inheritance |

CSE333, Autumn 2024

Dynamic Dispatch Example

+» When a member function is invoked on an object:

" The most-derived function accessible to the object’s visible type is
invoked (decided at run time based on actual type of the object)

[double DividendStock: :GetMarketValue () const {
return get shares() * get share price() + dividends ;

}

double "DividendStock": :GetProfit () const { // inherited
return GetMarketValue () - GetCost () ;

} // really Stock::GetProfit () DividendStock.cc

\.

[double Stock: :GetMarketValue () const {
return get shares() * get share price();

}

double Stock::GetProfit() const {
return GetMarketValue () - GetCost();

}

\.

Stock.cc -

W UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Autumn 2024

Dynamic Dispatch Example

(#include "Stock.h"
#include "DividendStock.h"

DividendStock dividend;
DividendStock* ds = ÷nd;
Stock* s = ÷nd; // why is this allowed?

// Invokes DividendStock::GetMarketValue ()
ds->GetMarketValue () ;

// Invokes DividendStock::GetMarketValue ()
s—->GetMarketValue () ;

// invokes Stock::GetProfit (), since that method 1s inherited.
// Stock::GetProfit () invokes DividendStock::GetMarketValue(),
// since that 1is the most-derived accessible function.
s—>GetProfit () ;

24

W UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Autumn 2024

Most-Derived

(class A { B
public:
// Foo will use dynamic dispatch
virtual void Foo () ; (void Bar() {)
I A* a ptr;
C c;
class B : public A {
public: a ptr = &c;
// B::Foo overrides A::Foo
virtual void Foo () ; // Whose Foo () 1is called?
I a ptr->Foo () ;
L} J
class C : public B {
// C inherits B::Foo()
\}; y,

25

W UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Autumn 2024

@ Poll Everywhere pollev.com/uwcse333

e

+ Whose Foo () iscalled? 2, class A {
Ve public:
C. virtual void Foo();
RN };
Dk | |
class B : public A {
void Bar () { public:
Q]. QZ A* a ptr; virtual void Foo () ;
C c; } i
E e;
A. class C : public B {
B. A D // 01: b
a_ptr = &cj class D : public C {
C. B B a ptr->Foo () ; public:
virtual void Foo () :;
D. B D ey .
’ a ptr = &e;
E. We're lost... a ptr->Foo () ; class E : public C {
} }s

26

W UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Autumn 2024

Lecture Outline

+ C++ Inheritance
= Roadmap for Next Two Lectures
" Conceptual Review
= Dynamic Dispatch

= vtables and vptr

+ Reference: C++ Primer, Chapter 15

28

YW UNIVERSITY of WASHINGTON

L18: C++ Inheritance |

How Can This Possibly Work?

+» The compiler produces Stock.o from just Stock.cc

" |t doesn’t know that DividendStock exists during this process

CSE333, Autumn 2024

Stock.h

rvirtual double Stock: :GetMarketValue ()
virtual double Stock: :GetProfit ()

const;
const;

}

}

rdouble Stock: :GetMarketValue ()
return get shares() * get share price();

double Stock::GetProfit ()

return GetMarketValue ()

const {
— GetCost () ;

const {

Stock.cc

29

CSE333, Autumn 2024

YW UNIVERSITY of WASHINGTON L18: C++ Inheritance |

How Can This Possibly Work?

+» The compiler produces Stock.o from just Stock.cc
" |t doesn’t know that DividendStock exists during this process

= So then how does the emitted code know to call

Stock: :GetMarketValue ()
vs. DividendStock: :GetMarketValue ()

vs. something else that might not exist yet?

DividendStock.cc cpp DividendStock.i ccl DividendStock.o

30

YW UNIVERSITY of WASHINGTON L18: C++ Inheritance |

How Can This Possibly Work?

+» The compiler produces Stock.o from just Stock.cc
" |t doesn’t know that DividendStock exists during this process

= So then how does the emitted code know to call

Stock: :GetMarketValue ()
vs. DividendStock: :GetMarketValue ()

vs. something else that might not exist yet?

" Function pointers!

CSE333, Autumn 2024

31

YW UNIVERSITY of WASHINGTON L18: C++ Inheritance |

CSE333, Autumn 2024

vtables and the vptr

+ If a class contains any virtual methods, the compiler
emits:

= A (single) virtual function table (vtable) for the class
- Contains a function pointer for each virtual method in the class

- The pointers in the vtable point to the most-derived function for that
class

= A virtual table pointer (vptr) for each object instance
- A pointer to a virtual table as a “hidden” member variable

- When the object’s constructor is invoked, the vptr is initialized to
point to the vtable for the newly constructed object’s class

- Thus, the vptr “remembers” what class the object is

32

W UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Autumn 2024

vtable/vptr Example

object class compiled
r N :
class Base { instances vtables code
public:
virtual void £1(); Base Base::f1 ()
virtual void £2(); bl | vptr £1() push %rbp
s £2 ()
b2 | vptr
class Derl : public Base { / Base::f2()
public: push Srbp
virtual void £1(); b3 [vptr I
Y
Derl::£f1()
Base bl, b2, b3; d|vptr T I
Derl d;
Base * bp = &d;
\ y

33

W UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Autumn 2024

vtable/vptr Example

(class Base { b (Base b; b
public: Derl dil;
virtual wvoid £1(); Der2z2 d2;
virtual wvoid £2();
s Base* blOptr = &b;
Base* blptr = &dl1;
class Derl : public Base { Base* bZ2ptr = &d2;
public:
virtual void £1(); bOptr->£f1(); // Base::fl1()
I bOptr->£2(); // Base::f2()
class Der2 : public Base { blptr->£f1(); // Derl::fl1()
public: blptr->£2(); // Base::f2()
virtual wvoid £2();
OL) d2.£1(); // Base::f1()
b2ptr->£1(); // Base::fl()
b2ptr->£2(); // Der2::£f2()

No mismatch between - /
static and dynamic type!

35

YW UNIVERSITY of WASHINGTON L18: C++ Inheritance |

vtable/vptr Example

object class compiled
instances vtables code

Base::f1()
push Srbp

b|vptr @=

Base::f2()
push S%rbp

dl | vptr @=-

Derl::£f1()
push S$rbp

Der2::£2()

d2 | vptr @=- push $rbp

CSE333, Autumn 2024

(Base b; h
Derl dl;

Der2 d2;

Base* bptr = &dl;
bptr->£1 () ;

// bptr -->

// dl.vptr -->

// Derl.vtable.fl -->
// Derl::fl1()

bptr = &d2;

bptr->£f1 () ;

// bptr -->

// d2.vptr -->

// Der2.vtable.fl -->
// Base::fl()
- y

YW UNIVERSITY of WASHINGTON

L18: C++ Inheritance |

Let’s Look at Some Actual Code

Let’s examine the following code using objdump

" gt+

-0 vtable vtable.cc

" objdump -CDS vtable > vtable.d

(class Base {

public:

virtual void £1();
virtual void £2 () ;

b g

class Derl : public Base {
public:
virtual wvoid f£1();

b g

CSE333, Autumn 2024

vtable.cc

int main (int argc, char** argv)

Derl dl;

dl.£1() ;

Base* bptr = &dl;
bptr->£1 () ;

U

W UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Autumn 2024

More to Come...

Next time...

38

