
CSE333, Autumn 2024L09: Low-Level I/O (POSIX)

Low-Level I/O – the POSIX Layer
CSE 333

Instructor: Hannah C. Tang

Teaching Assistants:

Deeksha Vatwani Hannah Jiang Jen Xu

Justin Tysdal Leanna Nguyen Sayuj Shahi

Wei Wu Yiqing Wang Youssef Ben Taleb

CSE333, Autumn 2024L09: Low-Level I/O (POSIX)

pollev.com/uwcse333

❖ Please write a 3 sentence summary of the slides after the

PollEverywhere (slides 43 and beyond) from Monday's

lecture ("C File I/O & System calls")

4

CSE333, Autumn 2024L09: Low-Level I/O (POSIX)

Administrivia (1)

❖ Exercises 6 and 7 both due Friday

❖ Today, we finish the materials for Exercise 7:

▪ POSIX I/O for directories and reading data from files

▪ Read a directory and open/copy text files found there

• Copy exactly and only the bytes in the file(s). No extra output, no

“formatting”, no “titles”, no other transformations.

▪ Good warm-up for…

❖ Homework 2 due in two weeks (Tue, Oct 29)

▪ File system crawler, indexer, and search engine

▪ Spec available now, starter code soon!
5

CSE333, Autumn 2024L09: Low-Level I/O (POSIX)

Administrivia (2)

❖ Homework 1:

▪ Lots of "OMG I submitted late because I forgot to allocate time for

tagging" – don't do that

▪ Late days are on Canvas, not on Gradescope

▪ Some suggestions for using git in 333:

• Don't checkout/branch/merge/rebase your primary repo

– (Well, maybe to recover a previous version of a file, but only if you know how to

reset the repo back to it’s proper state)

• `git pull` then checkout your tag in a different copy of your repo. Don’t do

that in your main copy!

❖ Exercises:

▪ Please remember that linter errors are correctness errors and therefore

are docked points (this includes copyrights!)
6

CSE333, Autumn 2024L09: Low-Level I/O (POSIX)

Lecture Outline

❖ System Calls

❖ POSIX Lower-Level I/O

7

CSE333, Autumn 2024L09: Low-Level I/O (POSIX)

Remember This Picture?

❖ Your program can access many

layers of APIs:

▪ C standard library

• Some are just ordinary functions

(<string.h>, for example)

• Some also call OS-level (POSIX)

functions (<stdio.h>, for example)

▪ POSIX compatibility API

• C-language interface to OS system

calls (fork(), read(), etc.)

▪ Underlying OS system calls

• Assembly language ☺

8

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux
system calls

Linux kernel

Your program

CSE333, Autumn 2024L09: Low-Level I/O (POSIX)

C Standard Library File I/O

❖ So far you’ve used the C standard library to access files

▪ Use a provided FILE* stream abstraction

▪ fopen(), fread(), fwrite(), fclose(), fseek()

❖ These are convenient and portable

▪ They are buffered

▪ They are implemented using lower-level OS calls

9

CSE333, Autumn 2024L09: Low-Level I/O (POSIX)

Lower-Level File Access

❖ Most UNIX-en support a common set of lower-level file

access APIs: POSIX – Portable Operating System Interface

▪ open(), read(), write(), close(), lseek()

• Similar in spirit to their f*() counterparts from C std lib

• Lower-level and unbuffered compared to their counterparts

• Also less convenient

▪ We will have to use these to read file system directories and for

network I/O, so we might as well learn them now

10

CSE333, Autumn 2024L09: Low-Level I/O (POSIX)

open()/close()

❖ To open a file:

▪ Pass in the filename and access mode

• Similar to fopen()

▪ Get back a “file descriptor”

• Similar to FILE* from fopen(), but is just an int

• Defaults: 0 is stdin, 1 is stdout, 2 is stderr

#include <fcntl.h> // for open()

#include <unistd.h> // for close()

...

int fd = open("foo.txt", O_RDONLY);

if (fd == -1) {

perror("open failed");

exit(EXIT_FAILURE);

}

...

close(fd);
11

CSE333, Autumn 2024L09: Low-Level I/O (POSIX)

Reading from a File

❖ ssize_t read(int fd, void* buf, size_t count);

▪ Returns the number of bytes read

• Might be fewer bytes than you requested (!!!)

• Returns 0 if you’re already at the end-of-file

• Returns -1 on error

▪ read has some surprising error modes…

ssize_t read(int fd, void* buf, size_t count);

12

CSE333, Autumn 2024L09: Low-Level I/O (POSIX)

Read error modes

❖ ssize_t read(int fd, void* buf, size_t count);

▪ On error, read returns -1 and sets the global errno variable

▪ You need to check errno to see what kind of error happened

• EBADF: bad file descriptor

• EFAULT: output buffer is not a valid address

• EINTR: read was interrupted, please try again (ARGH!!!! 😤😠)

• And many others…

ssize_t read(int fd, void* buf, size_t count);

13

CSE333, Autumn 2024L09: Low-Level I/O (POSIX)

pollev.com/uwcse333

❖ Assume you want to read n bytes from a file. Which is the

correct completion of the blank below?

14

char* buf = ...; // at least size n

int bytes_left = n;

int result; // result of read()

while (bytes_left > 0) {

result = read(fd, ______, bytes_left);

if (result == -1) {

if (errno != EINTR) {

// a real error happened,

// so return an error result

}

// EINTR happened,

// so do nothing and try again

continue;

}

bytes_left -= result;

}

A. buf

B. buf + bytes_left

C. buf + bytes_left - n

D. buf + n - bytes_left

E. We’re lost…

CSE333, Autumn 2024L09: Low-Level I/O (POSIX)

One way to read() 𝑛 bytes

15

int fd = open(filename, O_RDONLY);

char* buf = ...; // buffer of at least size n

int bytes_left = n;

int result;

while (bytes_left > 0) {

result = read(fd, buf + (n - bytes_left), bytes_left);

if (result == -1) {

if (errno != EINTR) {

// a real error happened, so return an error result

}

// EINTR happened, so do nothing and try again

continue;

} else if (result == 0) {

// EOF reached, so stop reading

break;

}

bytes_left -= result;

}

close(fd);

readN.c

CSE333, Autumn 2024L09: Low-Level I/O (POSIX)

Other Low-Level Functions

❖ Read man pages to learn about:

▪ write() – write data

▪ fsync() – flush data to the underlying device

▪ opendir(), readdir(), closedir() – deal with directory

listings

• Make sure you read the section 3 version (e.g. man 3 opendir)

❖ A useful shortcut sheet (from CMU):
http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

❖ More in sections this week…. (as in, tomorrow!)

16

http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

