
CSE333, Autumn 2024L08: File I/O, System Calls

Intro to C File I/O and System Calls
CSE 333

Instructor: Hannah C. Tang

Teaching Assistants:

Deeksha Vatwani Hannah Jiang Jen Xu

Justin Tysdal Leanna Nguyen Sayuj Shahi

Wei Wu Yiqing Wang Youssef Ben Taleb

CSE333, Autumn 2024L08: File I/O, System Calls

pollev.com/uwcse333

❖ Please review the code for cp_example.c, from "C File I/O

& System calls" lecture (Friday)

▪ That's it; that's the activity

6

CSE333, Autumn 2024L08: File I/O, System Calls

Administrivia

❖ Exercise 6 out today, due next FRIDAY morning 10/18

▪ C standard library File I/O practice

▪ Not due Wednesday because hw1 is due Tuesday night

❖ Homework 1 due tomorrow at 10 pm <= Not 11:00,

11:59, …

▪ Submit via GitLab (i.e., commit/push changes, then push tag(s),

then check your work)

7

CSE333, Autumn 2024L08: File I/O, System Calls

Lecture Outline

❖ File I/O with the C standard library

❖ System Calls

8

CSE333, Autumn 2024L08: File I/O, System Calls

Remember This Picture?

9

C application

C standard
library (glibc)

C++ STL/boost/
standard library

C++ application Java application

JRE

CPU memory storage network
GPU clock audio radio peripherals

HW/SW interface
(x86 + devices)

OS / app interface
(system calls)

operating system

hardware

A brief
diversion...

CSE333, Autumn 2024L08: File I/O, System Calls

File I/O

❖ We’ll start by using C’s standard library
▪ These functions are part of glibc on Linux

▪ They are implemented using Linux system calls

❖ C’s stdio defines the notion of a stream

▪ A way of reading or writing a sequence of characters to and from
a device

▪ Can be either text or binary; Linux does not distinguish

▪ Is buffered by default; libc reads ahead of your program

▪ Three streams provided by default: stdin, stdout, stderr

• You can open additional streams to read and write to files

▪ C streams are manipulated with a FILE* pointer, which is
defined in stdio.h

10

CSE333, Autumn 2024L08: File I/O, System Calls

C Stream Functions

❖ Some stream functions (complete list in stdio.h):

▪ FILE* fopen(filename, mode);

• Opens a stream to the specified file in specified file access mode

▪ int fclose(stream);

• Closes the specified stream (and file)

▪ x

• Writes an array of count elements of size bytes from ptr to stream

▪

• Reads an array of count elements of size bytes from stream to ptr

11

FILE* fopen(filename, mode);

int fclose(stream);

size_t fwrite(ptr, size, count, stream);

size_t fread(ptr, size, count, stream);

CSE333, Autumn 2024L08: File I/O, System Calls

C Stream Functions

❖ Formatted I/O stream functions (more in in stdio.h):

▪ int fprintf(stream, format, ...);

• Writes a formatted C string

– printf(...); is equivalent to fprintf(stdout, ...);

▪ int fscanf(stream, format, ...);

• Reads data and stores data matching the format string

12

int fprintf(stream, format, ...);

int fscanf(stream, format, ...);

CSE333, Autumn 2024L08: File I/O, System Calls

Error Checking/Handling

❖ Some error functions (complete list in stdio.h):

▪ void perror(message);

• Prints message and error message related to errno to stderr

▪ int ferror(stream);

• Checks if the error indicator associated with the specified stream is

set

▪ void clearerr(stream);

• Resets error and eof indicators for the specified stream

13

int ferror(stream);

int clearerr(stream);

void perror(message);

CSE333, Autumn 2024L08: File I/O, System Calls

C Streams Example

14

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#define READBUFSIZE 128

int main(int argc, char** argv) {

FILE *fin, *fout;

char readbuf[READBUFSIZE]; // space for input data

size_t readlen;

if (argc != 3) {

fprintf(stderr, "usage: ./cp_example infile outfile\n");

return EXIT_FAILURE; // defined in stdlib.h

}

// Open the input file

fin = fopen(argv[1], "rb"); // "rb" -> read, binary mode

if (fin == NULL) {

fprintf(stderr, "%s -- ", argv[1]);

perror("fopen for read failed");

return EXIT_FAILURE;

}

...

cp_example.c

CSE333, Autumn 2024L08: File I/O, System Calls

C Streams Example

15

int main(int argc, char** argv) {

... // previous slide’s code

// Open the output file

fout = fopen(argv[2], "wb"); // "wb" -> write, binary mode

if (fout == NULL) {

fprintf(stderr, "%s -- ", argv[2]);

perror("fopen for write failed");

return EXIT_FAILURE;

}

// Read from the file, write to fout

while ((readlen = fread(readbuf, 1, READBUFSIZE, fin)) > 0) {

if (fwrite(readbuf, 1, readlen, fout) < readlen) {

perror("fwrite failed");

return EXIT_FAILURE;

}

}

... // next slide’s code

}

cp_example.c

CSE333, Autumn 2024L08: File I/O, System Calls

C Streams Example

16

int main(int argc, char** argv) {

... // code from previous 2 slides

// Test to see if we encountered an error while reading

if (ferror(fin)) {

perror("fread failed");

return EXIT_FAILURE;

}

fclose(fin);

fclose(fout);

return EXIT_SUCCESS;

}

cp_example.c

CSE333, Autumn 2024L08: File I/O, System Calls

pollev.com/uwcse333

❖ Make the following changes to cp_example.c:

▪ Instead of copying the entire input file, only copy odd bytes to the

original output file

▪ Open a second output file, and write even bytes to this other file

▪ (do not add a second pass through the input file; do this all in a

single pass)

17

CSE333, Autumn 2024L08: File I/O, System Calls

Buffering

❖ By default, stdio uses buffering for streams:

▪ Data written by fwrite() is copied into a buffer allocated by

stdio inside your process’ address space

▪ As some point, the buffer will be “drained” into the destination:

18

CSE333, Autumn 2024L08: File I/O, System Calls

Buffering

❖ By default, stdio uses buffering for streams:

▪ Data written by fwrite() is copied into a buffer allocated by

stdio inside your process’ address space

▪ As some point, the buffer will be “drained” into the destination:

• When you explicitly call fflush() on the stream

• When the buffer size is exceeded (often 1024 or 4096 bytes)

• For stdout to console, when a newline is written (“line buffered”) or

when some other function tries to read from the console

• When you call fclose() on the stream

• When your process exits gracefully (exit() or return from

main())

19

CSE333, Autumn 2024L08: File I/O, System Calls

Why Buffer?

❖ Convenience – nicer API

▪ We’ll compare C’s fread() with POSIX’s read() shortly

❖ Performance – avoid disk accesses

▪ Group many small writes into a single larger write

▪ Why minimize the number of writes? Disk Latency = 😱😱😱

20

CSE333, Autumn 2024L08: File I/O, System Calls

Why Buffer?

❖ Disk Latency = 😱😱😱 (Jeff Dean from LADIS ’09)

21

Glancing at a sticky
note on your monitor

Asking your roommate

Looking in the textbook

Retaking all of 351
and part of 333

CSE333, Autumn 2024L08: File I/O, System Calls

Why NOT Buffer?

❖ Reliability – the buffer needs to be flushed

▪ Loss of computer power = loss of data

▪ “Completion” of a write (i.e. return from fwrite()) does not

mean the data has actually been written

• What if you signal another process to read the file you just wrote to?

❖ Performance – buffering takes time

▪ Copying data into the stdio buffer consumes CPU cycles and

memory bandwidth

▪ Can potentially slow down high-performance applications, like a

web server or database (“zero-copy”)

❖ When is buffering faster? Slower?
22

CSE333, Autumn 2024L08: File I/O, System Calls

Disabling C’s Buffering

❖ Explicitly turn off with setbuf(stream, NULL)

▪ But potential performance problems: lots of small writes triggers

lots of slower system calls instead of a single system call that

writes a large chunk

❖ Use POSIX APIs instead of C’s

▪ No buffering is done at the user level

▪ We’ll see these soon

❖ But… what about the layers below?

▪ The OS caches disk reads and writes in the file system buffer

cache

▪ Disk controllers have caches too!

23

CSE333, Autumn 2024L08: File I/O, System Calls

Lecture Outline

❖ File I/O with the C standard library

❖ System Calls

24

CSE333, Autumn 2024L08: File I/O, System Calls

What’s an OS?

25

C application

C standard
library (glibc)

C++ STL/boost/
standard library

C++ application Java application

JRE

CPU memory storage network
GPU clock audio radio peripherals

HW/SW interface
(x86 + devices)

OS / app interface
(system calls)

operating system

hardware

CSE333, Autumn 2024L08: File I/O, System Calls

What’s an OS?

❖ Software that:

▪ Abstracts away messy hardware devices

• Provides high-level, convenient, portable abstractions

(e.g. files, disk blocks)

▪ Directly interacts with the hardware

• OS is trusted to do so; user-level programs are not

• OS must be ported to new hardware; user-level programs are

portable

▪ Manages (allocates, schedules, protects) hardware resources

• Decides which programs can access which files, memory locations,

pixels on the screen, etc. and when

26

CSE333, Autumn 2024L08: File I/O, System Calls

OS: Abstraction Provider

❖ The OS is the “layer below”

▪ A module that your program can call (with system calls)

▪ Provides a powerful OS API – POSIX, Windows, etc.

27

a process running
your program

OS

OS
API

fi
le

 s
ys

te
m

n
et

w
o

rk
 s

ta
ck

vi
rt

u
al

 m
em

o
ry

p
ro

ce
ss

 m
gm

t.

…
 e

tc
…

File System
• open(), read(), write(), close(), …

Network Stack
• connect(), listen(), read(), write(), ...

Virtual Memory
• brk(), shm_open(), …

Process Management
• fork(), wait(), nice(), …

CSE333, Autumn 2024L08: File I/O, System Calls

OS: Protection System

❖ OS isolates process from each other

▪ But permits controlled sharing between them

• Through shared name spaces (e.g. file names)

❖ OS isolates itself from processes

▪ Must prevent processes from accessing the

hardware directly

28

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(t

ru
st

ed
)

Linux kernel

Your program

CSE333, Autumn 2024L08: File I/O, System Calls

OS: Interaction and Management System

❖ OS is allowed to access the hardware

▪ User-level processes run with the CPU

(processor) in unprivileged mode

▪ The OS runs with the CPU in privileged mode

▪ User-level processes invoke system calls to

safely enter the OS

29

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(t

ru
st

ed
)

Linux kernel

Your program

CSE333, Autumn 2024L08: File I/O, System Calls

System Call Trace

30

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(t

ru
st

ed
)

A CPU (thread of
execution) is running user-

level code in Process A;
the CPU is set to

unprivileged mode.

Linux kernel

Your program

CSE333, Autumn 2024L08: File I/O, System Calls

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(t

ru
st

ed
)

System Call Trace

31

Code in Process A invokes
a system call; the

hardware then sets the
CPU to privileged mode
and traps into the OS,

which invokes the
appropriate system call

handler.

sy
st

em
 c

al
l

Linux kernel

Your program

CSE333, Autumn 2024L08: File I/O, System Calls

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(t

ru
st

ed
)

System Call Trace

32

Because the CPU
executing the thread
that’s in the OS is in

privileged mode, it is able
to use privileged

instructions that interact
directly with hardware

devices like disks.

Linux kernel

Your program

CSE333, Autumn 2024L08: File I/O, System Calls

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(t

ru
st

ed
)

System Call Trace

33

sy
st

em
 c

al
l r

et
u

rn

Once the OS has finished
servicing the system call,

which might involve long waits
as it interacts with HW, it:

(1) Sets the CPU back to
unprivileged mode and

(2) Returns out of the system
call back to the user-level code

in Process A.

Linux kernel

Your program

CSE333, Autumn 2024L08: File I/O, System Calls

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(t

ru
st

ed
)

System Call Trace

34

The process continues
executing whatever

code is next after the
system call invocation.

Useful reference:
CSPP § 8.1–8.3
(the 351 book) Linux kernel

Your program

CSE333, Autumn 2024L08: File I/O, System Calls

Details on x86/Linux

❖ A more accurate picture:

▪ Consider a typical Linux process

▪ Its thread of execution can be in one

of several places:

• In your program’s code

• In glibc, a shared library containing

the C standard library, POSIX support,

and more

• In the Linux architecture-independent

code

• In Linux x86-64 code

38

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux
system calls

Linux kernel

Your program

CSE333, Autumn 2024L08: File I/O, System Calls

Details on x86/Linux

❖ Some routines your program

invokes may be entirely handled

by glibc without involving the

kernel

▪ e.g. strcmp() from stdio.h

▪ There is some initial overhead when

invoking functions in dynamically

linked libraries (during loading)

• But after symbols are resolved,

invoking glibc routines is basically

as fast as a function call within your

program itself!

39

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux kernel

Your program

CSE333, Autumn 2024L08: File I/O, System Calls

Details on x86/Linux

❖ Some routines may be handled

by glibc, but they in turn

invoke Linux system calls

▪ e.g. POSIX wrappers around Linux

syscalls

• POSIX readdir() invokes the

underlying Linux readdir()

▪ e.g. C stdio functions that read

and write from files

• fopen(), fclose(), fprintf()

invoke underlying Linux open(),

close(), write(), etc.

40

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux kernel

Your program

CSE333, Autumn 2024L08: File I/O, System Calls

Details on x86/Linux

❖ Your program can choose to

directly invoke Linux system calls

as well

▪ Nothing is forcing you to link with

glibc and use it

▪ But relying on directly-invoked Linux

system calls may make your

program less portable across UNIX

varieties

• (And won’t be portable to non-Unix

systems like Windows that run

standard C on top of their own,

different syscalls)

41

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux kernel

Your program

CSE333, Autumn 2024L08: File I/O, System Calls

pollev.com/uwcse333

❖ Thus far we've visualized how your

program can interact with the OS

as a stack

❖ Redraw this diagram as an onion

or dependency graph. Your

diagram must contain:

▪ Your program

▪ glibc

▪ POSIX

42

glibc

C standard
library

POSIX

Linux kernel

Your program

CSE333, Autumn 2024L08: File I/O, System Calls

Details on x86/Linux

❖ Let’s walk through how a Linux

system call actually works

▪ We’ll assume 32-bit x86 using the

modern SYSENTER / SYSEXIT x86

instructions

• x86-64 code is similar, though details

always change over time, so take this

as an example – not a debugging

guide

43

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux kernel

Your program

CSE333, Autumn 2024L08: File I/O, System Calls

Details on x86/Linux

Remember our

process address

space picture?

▪ Let’s add some

details:

44

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

CSE333, Autumn 2024L08: File I/O, System Calls

Details on x86/Linux

linux-gate.so is a

vdso

▪ A virtual

dynamically-linked

shared

object

▪ Is a kernel-provided

shared library that is

plunked into a process’

address space

▪ Provides the intricate

machine code needed to

trigger a system call

45

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

unpriv

SP

IP

CSE333, Autumn 2024L08: File I/O, System Calls

Details on x86/Linux

Process is executing your

program code

46

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

SP

IP

unpriv

CSE333, Autumn 2024L08: File I/O, System Calls

Details on x86/Linux

Process calls into a

glibc function

▪ e.g. fopen()

▪ We’ll ignore the

messy details of

loading/linking

shared libraries

47

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

unpriv

SP

IP

CSE333, Autumn 2024L08: File I/O, System Calls

Details on x86/Linux

glibc begins the process

of invoking a Linux system

call

▪ glibc’s

fopen() likely

invokes Linux’s

open() system

call

▪ Puts the system call #

and arguments into

registers

▪ Uses the call x86

instruction to call into

the routine

__kernel_vsyscall

located in linux-

gate.so
48

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

unpriv

SP

IP

CSE333, Autumn 2024L08: File I/O, System Calls

Details on x86/Linux

Recall that linux-

gate.so:

▪ Is a kernel-provided

shared library that is

plunked into a process’

address space

▪ Provides the intricate

machine code needed to

trigger a system call

49

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

unpriv

SP

IP

CSE333, Autumn 2024L08: File I/O, System Calls

Details on x86/Linux

linux-gate.so

eventually invokes

the SYSENTER x86

instruction

▪ SYSENTER is x86’s “fast

system call” instruction

• Causes the CPU to raise

its privilege level

• Traps into the Linux

kernel by changing the

SP, IP to a previously-

determined location

• Changes some

segmentation-related

registers (see CSE451)

50

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

priv

SP
IP

CSE333, Autumn 2024L08: File I/O, System Calls

Details on x86/Linux

The kernel begins

executing code at

the SYSENTER

entry point

▪ Is in the architecture-

dependent part of Linux

▪ It’s job is to:

• Look up the system call

number in a system call

dispatch table

• Call into the address

stored in that table entry;

this is Linux’s system call

handler

– For open(), the

handler is named

sys_open, and is

system call #5 51

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

priv

SP
IP

CSE333, Autumn 2024L08: File I/O, System Calls

Details on x86/Linux

The system call

handler executes

▪ What it does is

system-call specific

▪ It may take a long time to

execute, especially if it

has to interact with

hardware

• Linux may choose to

context switch the CPU

to a different runnable

process

52

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

priv

SP
IP

CSE333, Autumn 2024L08: File I/O, System Calls

Details on x86/Linux

Eventually, the

system call handler

finishes

▪ Returns back to the

system call entry point

• Places the system call’s

return value in the

appropriate register

• Calls SYSEXIT to return

to the user-level code

53

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

priv

SP
IP

CSE333, Autumn 2024L08: File I/O, System Calls

Details on x86/Linux

SYSEXIT transitions the

processor back to user-

mode code

▪ Restores the

IP, SP to

user-land values

▪ Sets the CPU

back to

unprivileged mode

▪ Changes some

segmentation-related

registers (see CSE451)

▪ Returns the processor

back to glibc

54

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

unpriv

SP

IP

CSE333, Autumn 2024L08: File I/O, System Calls

Details on x86/Linux

glibc continues to

execute

▪ Might execute more

system calls

▪ Eventually

returns back to

your program code

55

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

SP

IP

unpriv

CSE333, Autumn 2024L08: File I/O, System Calls

strace

❖ A useful Linux utility that shows the sequence of system

calls that a process makes:

56

bash$ strace ls 2>&1 | less

execve("/usr/bin/ls", ["ls"], [/* 41 vars */]) = 0

brk(NULL) = 0x15aa000

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =

0x7f03bb741000

access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)

open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3

fstat(3, {st_mode=S_IFREG|0644, st_size=126570, ...}) = 0

mmap(NULL, 126570, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f03bb722000

close(3) = 0

open("/lib64/libselinux.so.1", O_RDONLY|O_CLOEXEC) = 3

read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\300j\0\0\0\0\0\0"...,

832) = 832

fstat(3, {st_mode=S_IFREG|0755, st_size=155744, ...}) = 0

mmap(NULL, 2255216, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) =

0x7f03bb2fa000

mprotect(0x7f03bb31e000, 2093056, PROT_NONE) = 0

mmap(0x7f03bb51d000, 8192, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x23000) = 0x7f03bb51d000

... etc ...

CSE333, Autumn 2024L08: File I/O, System Calls

If You’re Curious

❖ Download the Linux kernel source code

▪ Available from http://www.kernel.org/

❖ man, section 2: Linux system calls

▪ man 2 intro

▪ man 2 syscalls

❖ man, section 3: glibc/libc library functions

▪ man 3 intro

❖ The book: The Linux Programming Interface by Michael

Kerrisk (keeper of the Linux man pages)
57

http://www.kernel.org/

CSE333, Autumn 2024L08: File I/O, System Calls

Extra Exercise #1

❖ Write a program that:

▪ Uses argc/argv to receive the name of a text file

▪ Reads the contents of the file a line at a time

▪ Parses each line, converting text into a uint32_t

▪ Builds an array of the parsed uint32_t’s

▪ Sorts the array

▪ Prints the sorted array to stdout

❖ Hint: use man to read about

getline, sscanf, realloc,

and qsort

58

bash$ cat in.txt

1213

3231

000005

52

bash$./extra1 in.txt

5

52

1213

3231

bash$

CSE333, Autumn 2024L08: File I/O, System Calls

Extra Exercise #2

❖ Write a program that:

▪ Loops forever; in each loop:

• Prompt the user to

input a filename

• Reads a filename

from stdin

• Opens and reads

the file

• Prints its contents

to stdout in the format shown:

❖ Hints:

▪ Use man to read about fgets

▪ Or, if you’re more courageous, try man 3 readline to learn about

libreadline.a and Google to learn how to link to it
59

00000000 50 4b 03 04 14 00 00 00 00 00 9c 45 26 3c f1 d5

00000010 68 95 25 1b 00 00 25 1b 00 00 0d 00 00 00 43 53

00000020 45 6c 6f 67 6f 2d 31 2e 70 6e 67 89 50 4e 47 0d

00000030 0a 1a 0a 00 00 00 0d 49 48 44 52 00 00 00 91 00

00000040 00 00 91 08 06 00 00 00 c3 d8 5a 23 00 00 00 09

00000050 70 48 59 73 00 00 0b 13 00 00 0b 13 01 00 9a 9c

00000060 18 00 00 0a 4f 69 43 43 50 50 68 6f 74 6f 73 68

00000070 6f 70 20 49 43 43 20 70 72 6f 66 69 6c 65 00 00

00000080 78 da 9d 53 67 54 53 e9 16 3d f7 de f4 42 4b 88

00000090 80 94 4b 6f 52 15 08 20 52 42 8b 80 14 91 26 2a

000000a0 21 09 10 4a 88 21 a1 d9 15 51 c1 11 45 45 04 1b

... etc ...

