
CSE333, Autumn 2024L07: Build Tools

Build Tools (make)
CSE 333

Instructor: Hannah C. Tang

Teaching Assistants:

Deeksha Vatwani Hannah Jiang Jen Xu

Justin Tysdal Leanna Nguyen Sayuj Shahi

Wei Wu Yiqing Wang Youssef Ben Taleb

CSE333, Autumn 2024L07: Build Tools

pollev.com/uwcse333

❖ Assume NthPrime.h, NthPrime.c, and ex4.c, as in

our most-recently completed exercise

❖ … except we are now precalculating the first 20 primes.

What are the contents of each .o?

2

#define NUM_PRECALC 20

int16_t kPrecalculated[NUM_PRECALC] =

{2, 3, 5, 7, /* etc */ };

int16_t NthPrime(int16_t n);

NthPrime.c cpp NthPrime.i cc1 NthPrime.o

ld ex4

ex4.c cpp ex4.i cc1 ex4.o

NthPrime.h

CSE333, Autumn 2024L07: Build Tools

Lecture Outline

❖ A Few Words about Code Quality

❖ Make and Build Tools

4

CSE333, Autumn 2024L07: Build Tools

Code Quality

❖ Code quality really matters – and not just for homework

❖ The quality rules we follow are distilled from almost 50

years of bug(fixe)s

▪ Bad casts = data loss or data corruption

▪ Memory leaks = unexpected crashes or data corruption

▪ Non-standard input/output parameters = incorrect usage by

callers

• We saw that on Ed this weekend!

▪ And so so so so so much more …

5

CSE333, Autumn 2024L07: Build Tools

Code Quality Rules

❖ Rule 0: The reader’s time is much more important than the

writer’s

▪ Clarity/understandability is critical

• (yes, we're talking about code comments)

• What does the reader need to know to understand / modify / use the code,

that can’t be discovered by reading the code itself?

▪ Good comments ultimately save the writer’s time, too!

6

CSE333, Autumn 2024L07: Build Tools

Code Quality Rules

❖ Rule 1: Match existing code

▪ Do output parameters go at the end of the param list? The beginning?

▪ Yes, whitespace does matter!

• char** argv vs char **argv "reads differently" to novice

programmers!

• There's a reason Google's style guide is so pedantic about whitespace

❖ Rule 2: Make use of the tools provided to you

▪ Compiler: fix the warnings!

▪ Valgrind: fix all of them unless you know why it’s not an error

▪ style checkers: fix most things; be sure you understand anything you

don’t fix and can justify it (use of long, types in sizeof(), readdir, not

much else)

7

CSE333, Autumn 2024L07: Build Tools

Lecture Outline

❖ A Few Words about Code Quality

❖ Make and Build Tools

8

CSE333, Autumn 2024L07: Build Tools

make

❖ make is a classic program for controlling what gets

(re)compiled and how

▪ Many other such programs exist (e.g. ant, maven, IDE “projects”)

❖ make has tons of fancy features, but only two basic ideas:

1) Scripts for executing commands

2) Dependencies for avoiding unnecessary work

❖ To avoid “just teaching make features” (boring and

narrow), let’s focus more on the concepts…

9

CSE333, Autumn 2024L07: Build Tools

Building Software

❖ Programmers spend a lot of time “building”

▪ Creating programs from source code

▪ Both programs that they write and other people write

10https://xkcd.com/303/

https://xkcd.com/303/

CSE333, Autumn 2024L07: Build Tools

Building Software

❖ Programmers spend a lot of time “building”

▪ Creating programs from source code

▪ Both programs that they write and other people write

❖ Programmers like to automate repetitive tasks

▪ Repetitive: gcc -Wall -g -std=c17 -o widget foo.c bar.c baz.c

• Retype this every time: 😭

• Use up-arrow or history: 😐 (still retype after logout)

• Have an alias or bash script: 🙂

• Have a Makefile: 😊 (you’re ahead of us)

11

CSE333, Autumn 2024L07: Build Tools

“Real” Build Process

❖ On larger projects, you can’t or don’t want to have one big (set

of) command(s) that redoes everything every time you change

anything:

1) If gcc didn’t combine steps for you, you’d need to preprocess,

compile, and link on your own (along with anything you used to

generate the C files)

2) If source files have multiple outputs (e.g. javadoc), you’d have to type

out the source file name(s) multiple times for each output command

3) You don’t want to have to document the build logic when you

distribute source code

4) You don’t want to recompile everything every time you change

something (especially if you have 105-107 files of source code)

❖ A script can handle 1-3 (use a variable for filenames for 2), but

4 is trickier
12

CSE333, Autumn 2024L07: Build Tools

An Example

❖ We have a small program that is split into multiple tiny

modules (code on the web linked to this lecture):

❖ Modules:

▪ speak.h/speak.c: write a string to stdout

▪ shout.h/shout.c: write a string to stdout LOUDLY

▪ main.c: client program

❖ Demo: build this program incrementally, and recompile

only necessary parts when something changes

❖ How do we automate this “minimal rebuild”?

13

speak.cspeak.h shout.cshout.hmain.c

CSE333, Autumn 2024L07: Build Tools

Recompilation Management

❖ The “theory” behind avoiding unnecessary compilation is

a dependency DAG (directed, acyclic graph)

❖ To create a target 𝑡, you need sources 𝑠1, 𝑠2, … , 𝑠𝑛 and a

command 𝑐 that directly or indirectly uses the sources

▪ It 𝑡 is newer than every source (file-modification times), assume

there is no reason to rebuild it

▪ Recursive building: if some source 𝑠𝑖 is itself a target for some

other sources, see if it needs to be rebuilt…

▪ Cycles “make no sense”!

14

CSE333, Autumn 2024L07: Build Tools

Theory Applied to Our Example

❖ What are the dependencies between built and source files?

❖ What needs to be rebuilt if something changes?

15

speak.cspeak.h shout.cshout.hmain.c

speak.o shout.omain.o

talk

CSE333, Autumn 2024L07: Build Tools

pollev.com/uwcse333

❖ Draw the dependency graph for example_program_ll.c

and example_program_ht.c

▪ (ignore the existence of CSE333.h, libhw1.a, and the _priv.h's)

16

CSE333, Autumn 2024L07: Build Tools

make Basics

❖ A makefile contains a bunch of triples:

▪ Colon after target is required

▪ Command lines must start with a TAB, not space

▪ Multiple commands for same target are executed in order

• Can split commands over multiple lines by ending lines with ‘\’

❖ Example:

❖ Demo: look at Makefile for our example program

17

foo.o: foo.c foo.h bar.h

gcc -Wall -o foo.o -c foo.c

target: sources

command← Tab →

CSE333, Autumn 2024L07: Build Tools

Using make

❖ Defaults:

▪ If no -f specified, use a file named Makefile

▪ If no target specified, will use the first one in the file

▪ Will interpret commands in your default shell

• Set SHELL variable in makefile to ensure

❖ Target execution:

▪ Check each source in the source list:

• If the source is a target in the Makefile, then process it recursively

• If some source does not exist, then error

• If any source is newer than the target (or target does not exist), run

command (presumably to update the target)
18

bash% make -f <makefileName> target

CSE333, Autumn 2024L07: Build Tools

make Variables

❖ You can define variables in a makefile:

▪ All values are strings of text, no “types”

▪ Variable names are case-sensitive and can’t contain ‘:’, ‘#’, ‘=’, or

whitespace

❖ Example:

❖ Advantages:

▪ Easy to change things (especially in multiple commands)

▪ Can also specify on the command line (CC=clang FLAGS=-g)
19

CC = gcc

CFLAGS = -Wall -std=c17

foo.o: foo.c foo.h bar.h

$(CC) $(CFLAGS) -o foo.o -c foo.c

CSE333, Autumn 2024L07: Build Tools

More Variables

❖ It’s common to use variables to hold list of filenames:

20

OBJFILES = foo.o bar.o baz.o

widget: $(OBJFILES)

gcc -o widget $(OBJFILES)

clean:

rm $(OBJFILES) widget *~

CSE333, Autumn 2024L07: Build Tools

"Phony” Targets

❖ It’s common to use variables to hold list of filenames:

❖ clean is a convention

▪ Remove generated files to “start over” from just the source

▪ It’s “funny” because the target doesn’t exist and there are no

sources, but it works because:

• The target doesn’t exist, so it must be “remade” by running the

command

• These “phony” targets have several uses, such as “all”…
21

OBJFILES = foo.o bar.o baz.o

widget: $(OBJFILES)

gcc -o widget $(OBJFILES)

clean:

rm $(OBJFILES) widget *~

CSE333, Autumn 2024L07: Build Tools

“all” Example

22

all: prog B.class someLib.a

notice no commands this time

prog: foo.o bar.o main.o

gcc –o prog foo.o bar.o main.o

B.class: B.java

javac B.java

someLib.a: foo.o baz.o

ar r foo.o baz.o

foo.o: foo.c foo.h header1.h header2.h

gcc -c -Wall foo.c

similar targets for bar.o, main.o, baz.o, etc...

CSE333, Autumn 2024L07: Build Tools

Revenge of the Funny Characters

❖ Special variables:

▪ $@ for target name

▪ $^ for all sources

▪ $< for left-most source

▪ Lots more! – see the documentation

❖ Examples:

23

CC and CFLAGS defined above

widget: foo.o bar.o

$(CC) $(CFLAGS) -o $@ $^

foo.o: foo.c foo.h bar.h

$(CC) $(CFLAGS) -c $<

CSE333, Autumn 2024L07: Build Tools

And more…

❖ There are a lot of “built-in” rules – see documentation

❖ There are “suffix” rules and “pattern” rules

▪ Example:

❖ Remember that you can put any shell command – even

whole scripts!

❖ You can repeat target names to add more dependencies

❖ Often this stuff is more useful for reading makefiles than

writing your own (until some day…)

24

%.class: %.java

javac $< # we need the $< here

CSE333, Autumn 2024L07: Build Tools

Extra Exercise #1

❖ Modify the linked list code from Lecture 5 Extra

Exercise #1

▪ Add static declarations to any internal functions you implemented

in linkedlist.h

▪ Add a header guard to the header file

▪ Write a Makefile

• Use Google to figure out how to add rules to the Makefile to

produce a library (liblinkedlist.a) that contains the linked list

code

29

