
CSE333, Autumn 2024L04: The Heap and Structs

The Heap and Structs
CSE 333

Instructor: Hannah C. Tang

Teaching Assistants:

Deeksha Vatwani Hannah Jiang Jen Xu

Justin Tysdal Leanna Nguyen Sayuj Shahi

Wei Wu Yiqing Wang Youssef Ben Taleb

CSE333, Autumn 2024L04: The Heap and Structs

Administrivia

❖ Yet another exercise, ex3, out today, due Wed morning
▪ Ex0 returned; median was "Check Minus"

❖ HW0 grading is in flight
▪ Incorrectly tagged repos are the largest cause of submission errors in this

course!

❖ HW1 due a week from Tuesday
▪ You should have looked through it by now

▪ Be sure to read headers carefully while implementing
• Header files / interfaces may not be changed, but ok to add local “helper”

functions in .c files when appropriate

▪ Pace yourself and make steady progress
• Then you can “walk away” and come back later or the next day with a

fresh look if when things get complicated/weird/buggy

2

CSE333, Autumn 2024L04: The Heap and Structs

Documentation vs Folklore…

❖ Documentation:

▪ man pages, books

▪ Reference websites: cplusplus.org, man7.org, gcc.gnu.org, etc.

❖ Folklore:

▪ Google-ing, stackoverflow, that rando in lab or on zoom

❖ Tradeoffs? Relative strengths & weaknesses?

▪ Discuss

5

CSE333, Autumn 2024L04: The Heap and Structs

Lecture Outline

❖ Heap-allocated Memory

▪ malloc() and free()

▪ Memory leaks

❖ structs and typedef

6

CSE333, Autumn 2024L04: The Heap and Structs

Memory Allocation So Far

❖ So far, we have seen two kinds of memory allocation:

int counter = 0; // global var

int main(int argc, char** argv) {

counter++;

printf("count = %d\n",counter);

return 0;

}

int foo(int a) {

int x = a + 1; // local var

return x;

}

int main(int argc, char* argv[]) {

int y = foo(10); // local var

printf("y = %d\n",y);

return 0;

}

▪ counter is statically-allocated

• Allocated when program is loaded

• Deallocated when program exits

▪ a, x, y are automatically-

allocated

• Allocated when function is called

• Deallocated when function returns

7

CSE333, Autumn 2024L04: The Heap and Structs

Why Dynamic Allocation?

❖ Situations where static and automatic allocation aren’t

sufficient:

▪ We need memory that persists across multiple function calls but

not for the whole lifetime of the program

▪ We need more memory than can fit on the stack

▪ We need memory whose size is not known in advance

– For example, read a file into memory….

// this is pseudo-C code

char* ReadFile(char* filename) {

int size = GetFileSize(filename);

char* buffer = AllocateMem(size);

ReadFileIntoBuffer(filename, buffer);

return buffer;

}

8

CSE333, Autumn 2024L04: The Heap and Structs

Dynamic Allocation

❖ What we want is dynamically-allocated memory

▪ Your program explicitly requests a new block of memory

• The code allocates it at runtime, perhaps with help from OS

▪ Dynamically-allocated memory persists until either:

• Your code explicitly deallocates it (manual memory management)

• A garbage collector collects it (automatic memory management)

❖ C requires you to manually manage memory

▪ Gives you more control, but causes headaches

▪ Neither better nor worse than automatic memory management …

• … if you use modern coding conventions and tools (eg, Valgrind)

9

CSE333, Autumn 2024L04: The Heap and Structs

The Heap

❖ The heap is a large pool of

available memory used to hold

dynamically-allocated data

▪ malloc allocates chunks of data in

the Heap; free deallocates those

chunks

▪ malloc maintains bookkeeping data

in the Heap to track allocated blocks

10

0xFF…FF

0x00…00

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

CSE333, Autumn 2024L04: The Heap and Structs

Aside: NULL

❖ NULL is a memory location that is guaranteed to be

invalid

▪ In C on Linux, NULL is 0x0 and an attempt to dereference NULL

causes a segmentation fault

❖ Useful as an indicator of an uninitialized (or currently

unused) pointer or allocation error

▪ It’s better to cause a segfault than to allow the corruption of

memory!

11

int main(int argc, char** argv) {

int* p = NULL;

*p = 1; // causes a segmentation fault

return 0;

}

segfault.c

CSE333, Autumn 2024L04: The Heap and Structs

malloc()

❖ General usage:

❖ malloc allocates a block of memory of the requested
size
▪ Returns a pointer to the first byte of that memory

• And returns NULL if the memory allocation failed!

▪ You should assume that the memory initially contains garbage

▪ You’ll typically use sizeof to calculate the size you need and
cast the result to the desired pointer type

var = (type*) malloc(size in bytes)

// allocate a 10-float array

float* arr = (float*) malloc(10*sizeof(float));

if (arr == NULL) {

return errcode;

}

... // do stuff with arr

12

CSE333, Autumn 2024L04: The Heap and Structs

calloc()

❖ General usage:

❖ Like malloc, but also zeros out the block of memory

▪ Helpful when zero-initialization wanted (but don’t use it to mask

bugs – fix those)

▪ Slightly slower; but useful for non-performance-critical code or if

you really are planning to zero out the new block of memory

▪ malloc and calloc are found in stdlib.h

var = (type*) calloc(num, bytes per element)

// allocate a 10-double array

double* arr = (double*) calloc(10, sizeof(double));

if (arr == NULL) {

return errcode;

}

... // do stuff with arr

13

CSE333, Autumn 2024L04: The Heap and Structs

Aside: Memory Allocation Failures (1 of 2)

❖ Should we check the return value of system functions?

▪ YES! C uses return values for letting you know about errors.

▪ BUT! Malloc/calloc are a special case; most programs of

reasonable complexity don’t handle OOMs well.

❖ Our approach:

▪ Slides and exercises (ie, simple projects) WILL check for allocation

failures.

▪ HWs (ie, a complex project) will NOT check for allocation failures.

14

CSE333, Autumn 2024L04: The Heap and Structs

Aside: Solving Allocation Failures (2 of 2)

❖ Shut down gracefully

▪ For most complex programs, this requires allocating memory to

finish database transactions, flush logfiles, etc.

▪ Solution: allocated a commited region of memory at program start

(eg, 1MB) specifically for use at shutdown. This wastes memory in

the “common case”!

❖ Free some memory, then retry the allocation

▪ Need to keep track of “high priority” and “low priority” regions

▪ Now malloc needs to be re-entrant!

❖ tl;dr: handling malloc failures gracefully is still unsolved
15

CSE333, Autumn 2024L04: The Heap and Structs

free()

❖ Usage: free(pointer);

❖ Deallocates the memory pointed-to by the pointer

▪ Pointer must point to the first byte of heap-allocated memory (i.e.

something previously returned by malloc or calloc)

▪ Freed memory becomes eligible for future (re-)allocation

▪ The bits in the pointer are not changed by calling free

• Defensive programming: can set pointer to NULL after freeing it

16

free(pointer);

float* arr = (float*) malloc(10*sizeof(float));

if (arr == NULL)

return errcode;

... // do stuff with arr

free(arr);

arr = NULL; // OPTIONAL

CSE333, Autumn 2024L04: The Heap and Structs

Heap and Stack Example

17

#include <stdlib.h>

int* copy(int a[], int size) {

int i, *a2;

a2 = malloc(size*sizeof(int));

if (a2 == NULL)

return NULL;

for (i = 0; i < size; i++)

a2[i] = a[i];

return a2;

}

int main(int argc, char** argv) {

int nums[4] = {1, 2, 3, 4};

int* ncopy = copy(nums, 4);

// .. do stuff with the array ..

free(ncopy);

return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

main
ncopy

nums

Note: Arrow points
to next instruction.

CSE333, Autumn 2024L04: The Heap and Structs

Heap and Stack Example

18

#include <stdlib.h>

int* copy(int a[], int size) {

int i, *a2;

a2 = malloc(size*sizeof(int));

if (a2 == NULL)

return NULL;

for (i = 0; i < size; i++)

a2[i] = a[i];

return a2;

}

int main(int argc, char** argv) {

int nums[4] = {1, 2, 3, 4};

int* ncopy = copy(nums, 4);

// .. do stuff with the array ..

free(ncopy);

return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

main
ncopy

nums 1 2 3 4

CSE333, Autumn 2024L04: The Heap and Structs

Heap and Stack Example

19

#include <stdlib.h>

int* copy(int a[], int size) {

int i, *a2;

a2 = malloc(size*sizeof(int));

if (a2 == NULL)

return NULL;

for (i = 0; i < size; i++)

a2[i] = a[i];

return a2;

}

int main(int argc, char** argv) {

int nums[4] = {1, 2, 3, 4};

int* ncopy = copy(nums, 4);

// .. do stuff with the array ..

free(ncopy);

return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

main
ncopy

copy
a size 4

nums 1 2 3 4

i a2

CSE333, Autumn 2024L04: The Heap and Structs

Heap and Stack Example

20

#include <stdlib.h>

int* copy(int a[], int size) {

int i, *a2;

a2 = malloc(size*sizeof(int));

if (a2 == NULL)

return NULL;

for (i = 0; i < size; i++)

a2[i] = a[i];

return a2;

}

int main(int argc, char** argv) {

int nums[4] = {1, 2, 3, 4};

int* ncopy = copy(nums, 4);

// .. do stuff with the array ..

free(ncopy);

return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

malloc

main
ncopy

copy
a size 4

nums 1 2 3 4

i a2

CSE333, Autumn 2024L04: The Heap and Structs

Heap and Stack Example

21

#include <stdlib.h>

int* copy(int a[], int size) {

int i, *a2;

a2 = malloc(size*sizeof(int));

if (a2 == NULL)

return NULL;

for (i = 0; i < size; i++)

a2[i] = a[i];

return a2;

}

int main(int argc, char** argv) {

int nums[4] = {1, 2, 3, 4};

int* ncopy = copy(nums, 4);

// .. do stuff with the array ..

free(ncopy);

return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

main
ncopy

copy
a size 4

nums 1 2 3 4

i a2

CSE333, Autumn 2024L04: The Heap and Structs

Heap and Stack Example

22

#include <stdlib.h>

int* copy(int a[], int size) {

int i, *a2;

a2 = malloc(size*sizeof(int));

if (a2 == NULL)

return NULL;

for (i = 0; i < size; i++)

a2[i] = a[i];

return a2;

}

int main(int argc, char** argv) {

int nums[4] = {1, 2, 3, 4};

int* ncopy = copy(nums, 4);

// .. do stuff with the array ..

free(ncopy);

return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

main
ncopy

copy
a size 4

nums 1 2 3 4

i 0 a2

CSE333, Autumn 2024L04: The Heap and Structs

Heap and Stack Example

23

#include <stdlib.h>

int* copy(int a[], int size) {

int i, *a2;

a2 = malloc(size*sizeof(int));

if (a2 == NULL)

return NULL;

for (i = 0; i < size; i++)

a2[i] = a[i];

return a2;

}

int main(int argc, char** argv) {

int nums[4] = {1, 2, 3, 4};

int* ncopy = copy(nums, 4);

// .. do stuff with the array ..

free(ncopy);

return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

1 2 3 4

main
ncopy

copy
a size 4

nums 1 2 3 4

i 4 a2

CSE333, Autumn 2024L04: The Heap and Structs

Heap and Stack Example

24

#include <stdlib.h>

int* copy(int a[], int size) {

int i, *a2;

a2 = malloc(size*sizeof(int));

if (a2 == NULL)

return NULL;

for (i = 0; i < size; i++)

a2[i] = a[i];

return a2;

}

int main(int argc, char** argv) {

int nums[4] = {1, 2, 3, 4};

int* ncopy = copy(nums, 4);

// .. do stuff with the array ..

free(ncopy);

return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

1 2 3 4

main
ncopy

nums 1 2 3 4

CSE333, Autumn 2024L04: The Heap and Structs

Heap and Stack Example

25

#include <stdlib.h>

int* copy(int a[], int size) {

int i, *a2;

a2 = malloc(size*sizeof(int));

if (a2 == NULL)

return NULL;

for (i = 0; i < size; i++)

a2[i] = a[i];

return a2;

}

int main(int argc, char** argv) {

int nums[4] = {1, 2, 3, 4};

int* ncopy = copy(nums, 4);

// .. do stuff with the array ..

free(ncopy);

return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

1 2 3 4

main
ncopy

nums 1 2 3 4

CSE333, Autumn 2024L04: The Heap and Structs

Heap and Stack Example

26

#include <stdlib.h>

int* copy(int a[], int size) {

int i, *a2;

a2 = malloc(size*sizeof(int));

if (a2 == NULL)

return NULL;

for (i = 0; i < size; i++)

a2[i] = a[i];

return a2;

}

int main(int argc, char** argv) {

int nums[4] = {1, 2, 3, 4};

int* ncopy = copy(nums, 4);

// .. do stuff with the array ..

free(ncopy);

return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

main
ncopy

nums 1 2 3 4

free

CSE333, Autumn 2024L04: The Heap and Structs

Heap and Stack Example

27

#include <stdlib.h>

int* copy(int a[], int size) {

int i, *a2;

a2 = malloc(size*sizeof(int));

if (a2 == NULL)

return NULL;

for (i = 0; i < size; i++)

a2[i] = a[i];

return a2;

}

int main(int argc, char** argv) {

int nums[4] = {1, 2, 3, 4};

int* ncopy = copy(nums, 4);

// .. do stuff with the array ..

free(ncopy);

return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

main
ncopy

nums 1 2 3 4

CSE333, Autumn 2024L04: The Heap and Structs

pollev.com/uwcse333

❖ Choose one of the numbered lines and

explain to a

neighbor why it

is a bug

30

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

int a[2];

int* b = malloc(2*sizeof(int));

int* c;

a[2] = 5; // 1

b[0] += 2; // 2

c = b+3; // 3

free(&(a[0])); // 4

free(b); // 5

free(b); // 6

b[0] = 5; // 7

// and many more!

return 0;

}

CSE333, Autumn 2024L04: The Heap and Structs

Memory Corruption

❖ There are all sorts of ways to corrupt memory in C

31

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

int a[2];

int* b = malloc(2*sizeof(int));

int* c;

a[2] = 5; // assign past the end of an array

b[0] += 2; // assume malloc zeros out memory

c = b+3; // mess up your pointer arithmetic

free(&(a[0])); // free something not malloc'ed

free(b);

free(b); // double-free the same block

b[0] = 5; // use a freed (dangling) pointer

// and many more!

return 0;

}
memcorrupt.c

CSE333, Autumn 2024L04: The Heap and Structs

Memory Corruption - What Happens?

32

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

int a[2];

int* b = malloc(2*sizeof(int));

int* c;

a[2] = 5; // assign past the end of an array

b[0] += 2; // assume malloc zeros out memory

c = b+3; // mess up your pointer arithmetic

free(&(a[0])); // free something not malloc'ed

free(b);

free(b); // double-free the same block

b[0] = 5; // use a freed (dangling) pointer

// and many more!

return 0;

}

memcorrupt.c

stack:

heap:

main

a

b

c

?

?

?

?

???

X

CSE333, Autumn 2024L04: The Heap and Structs

Memory Leak

❖ A memory leak occurs when code fails to deallocate
dynamically-allocated memory that is no longer used
▪ e.g. forget to free malloc-ed block, lose/change pointer to the block

▪ Takes real work to prevent – as pointers are passed around, what part of
the program is responsible for freeing each malloc-ed block?

❖ What happens: program’s VM footprint will keep growing
▪ This might be OK for short-lived program, since all memory is

deallocated when program ends

▪ Usually has bad repercussions for long-lived programs

• Might slow down over time (e.g. lead to VM thrashing)

• Might exhaust all available memory and crash

• Other programs might get starved of memory

33

CSE333, Autumn 2024L04: The Heap and Structs

Lecture Outline

❖ Heap-allocated Memory

▪ malloc() and free()

▪ Memory leaks

❖ structs and typedef

34

CSE333, Autumn 2024L04: The Heap and Structs

Structured Data

❖ A struct is a C datatype that contains a set of fields

▪ Similar to a Java class, but with no methods or constructors

▪ Useful for defining new structured types of data

▪ Act similarly to primitive variables (can assign, pass by value, …)

▪ A struct tagname is a tag; not a full first-class type name

❖ Generic declaration:

35

struct tagname {

type1 name1;

...

typeN nameN;

};

// the following defines a new

// structured datatype called

// a "struct Point"

struct Point {

float x, y;

};

// declare and initialize a

// struct Point variable

struct Point origin = {0.0,0.0};

CSE333, Autumn 2024L04: The Heap and Structs

Using structs

❖ Use “.” to refer to a field in a struct

❖ Use “->” to refer to a field from a struct pointer

▪ Shorthand for: dereference pointer first, then accesses field

• Using p->x instead of (*p).x is standard practice – do it that way

36

struct Point {

float x, y;

};

int main(int argc, char** argv) {

struct Point p1 = {0.0, 0.0}; // p1 is stack allocated

struct Point* p1_ptr = &p1;

p1.x = 1.0;

p1_ptr->y = 2.0; // equivalent to (*p1_ptr).y = 2.0;

return 0;

}

simplestruct.c

CSE333, Autumn 2024L04: The Heap and Structs

Which Copy?

❖ We've seen values being copied (primitive types)

❖ We've seen addresses being copied (arrays)

❖ Which one happens when we copy a struct instance? 37

int main(int argc, char** argv) {

int x = 123;

int y = x;

return 0;

int main(int argc, char** argv) {

int x[] = {1, 2, 3};

int y[] = x;

return 0;

CSE333, Autumn 2024L04: The Heap and Structs

Copy by Assignment

❖ You can assign the value of a struct from a struct of the

same type – this copies the entire contents byte-for-byte!

38

#include <stdio.h>

struct Point {

float x, y;

};

int main(int argc, char** argv) {

struct Point p1 = {0.0, 2.0};

struct Point p2 = {4.0, 6.0};

printf("p1: {%f,%f} p2: {%f,%f}\n", // p1: { , }

p1.x, p1.y, p2.x, p2.y); // p2: { , }

p2 = p1;

printf("p1: {%f,%f} p2: {%f,%f}\n", // p1: { , }

p1.x, p1.y, p2.x, p2.y); // p2: { , }

return 0;

}

structassign.c

CSE333, Autumn 2024L04: The Heap and Structs

pollev.com/uwcse333

❖ Draw the box-and-arrow diagram for this snippet, when

execution has reached the red arrow

39

struct SmartArray {

int len;

char* arr;

};

int main(int argc, char** argv) {

struct SmartArray a1

= {2, (char*)malloc(sizeof(char)*2))};

struct SmartArray a2

= {5, (char*)malloc(sizeof(char)*5))};

a1 = a2;

return 0;

}

CSE333, Autumn 2024L04: The Heap and Structs

Structs as Arguments

❖ Structs are passed by value, like everything else in C

▪ Entire struct is copied – where?

▪ To manipulate a struct argument, pass a pointer instead

40

struct Point{

int x, y;

};

void DoubleXBroken(struct Point p) { p.x *= 2; }

void DoubleXWorks(struct Point* p) { p->x *= 2; }

int main(int argc, char** argv) {

struct Point a = {1,1};

DoubleXBroken(a);

printf("(%d,%d)\n", a.x, a.y); // prints: (,)

DoubleXWorks(&a);

printf("(%d,%d)\n", a.x, a.y); // prints: (,)

return 0;

}

CSE333, Autumn 2024L04: The Heap and Structs

typedef

❖ Generic format: typedef type name;

❖ Allows you to define new data type names/synonyms

▪ Both type and name are usable and refer to the same type

▪ Be careful with pointers – * before name is part of type!

41

typedef type name;

// make "superlong" a synonym for "unsigned long long"

typedef unsigned long long superlong;

// make "str" a synonym for "char*"

typedef char *str;

// make "Point" a synonym for "struct point_st { ... }“

// make "PointPtr" a synonym for "struct point_st*"

typedef struct point_st {

superlong x;

superlong y;

} Point, *PointPtr; // similar syntax to "int n, *p;"

Point origin = {0, 0};

CSE333, Autumn 2024L04: The Heap and Structs

Dynamically-allocated Structs

❖ You can malloc and free structs, just like other data

type

▪ sizeof is particularly helpful here

42

// a complex number is a + bi

typedef struct complex_st {

double real; // real component

double imag; // imaginary component

} Complex, *ComplexPtr;

// note that ComplexPtr is equivalent to Complex*

ComplexPtr AllocComplex(double real, double imag) {

Complex* retval = (Complex*) malloc(sizeof(Complex));

if (retval != NULL) {

retval->real = real;

retval->imag = imag;

}

return retval;

}

complexstruct.c

CSE333, Autumn 2024L04: The Heap and Structs

Returning Structs

❖ Exact method of return depends on calling conventions

▪ Often in %rax and %rdx for small structs

▪ Often returned in memory for larger structs

43

// a complex number is a + bi

typedef struct complex_st {

double real; // real component

double imag; // imaginary component

} Complex, *ComplexPtr;

Complex MultiplyComplex(Complex x, Complex y) {

Complex retval;

retval.real = (x.real * y.real) - (x.imag * y.imag);

retval.imag = (x.imag * y.real) - (x.real * y.imag);

return retval; // returns a copy of retval

}

complexstruct.c

CSE333, Autumn 2024L04: The Heap and Structs

Passing Structs: Copy or Pointer?

❖ Cost of Copies: if the struct is smaller than a pointer type,

passing by copy is cheaper

❖ Cost of Accesses: accesses through pointers require more

"jumping around memory"; more expensive and can be

harder for compiler to optimize

❖ Decision:

▪ For small structs (like struct complex_st), passing a copy of

the struct can be faster and often preferred if function only reads

data

▪ or large structs or if the function should change caller’s data, use

pointers 44

CSE333, Autumn 2024L04: The Heap and Structs

Structs and Arrays

45

struct AlternativePoint {

float coords[2];

};

void PrintAlternativePoint(struct AlternativePoint p) {

printf(“ap: {%f,%f} @ %p\n", p.coords[0], p.coords[1], &p.coords);

}

struct AlternativePoint ap = {{10.0, 100.0}};

printf(“ap: {%f,%f} @ %p\n", ap.coords[0], ap.coords[1],

&ap.coords);

PrintAlternativePoint(ap);

structsarrays.c

❖ Arrays contained in structs are passed by copy, just like

the rest of the struct.

❖ … but arrays of structs are still passed by address

CSE333, Autumn 2024L04: The Heap and Structs

Extra Exercise #1

❖ Write a program that defines:

▪ A new structured type Point

• Represent it with floats for the x and y coordinates

▪ A new structured type Rectangle

• Assume its sides are parallel to the x-axis and y-axis

• Represent it with the bottom-left and top-right Points

▪ A function that computes and returns the area of a Rectangle

▪ A function that tests whether a Point is inside of a Rectangle

46

CSE333, Autumn 2024L04: The Heap and Structs

Extra Exercise #2

❖ Implement AllocSet() and FreeSet()

▪ AllocSet() needs to use malloc twice: once to allocate a new

ComplexSet and once to allocate the “points” field inside it

▪ FreeSet() needs to use free twice

47

typedef struct complex_st {

double real; // real component

double imag; // imaginary component

} Complex;

typedef struct complex_set_st {

double num_points_in_set;

Complex* points; // an array of Complex

} ComplexSet;

ComplexSet* AllocSet(Complex c_arr[], int size);

void FreeSet(ComplexSet* set);

