
CSE333, Autumn 2024L01: Intro, C

Intro, C refresher
CSE 333

Instructor: Hannah C. Tang

Teaching Assistants:

Deeksha Vatwani Hannah Jiang Jen Xu

Justin Tysdal Leanna Nguyen Sayuj Shahi

Wei Wu Yiqing Wang Youssef Ben Taleb

CSE333, Autumn 2024L01: Intro, C

pollev.com/uwcse333

2

❖ What have you heard about CSE 333 or Hannah? What do
you hope to learn? Do you have any concerns going into
the class?

CSE333, Autumn 2024L01: Intro, C

Lecture Outline

❖ Course Introduction

❖ Course Policies

❖ C Intro

3

CSE333, Autumn 2024L01: Intro, C

Introductions: Course Staff

❖ Instructor: Hannah C. Tang (hctang@cs)

▪ UW CSE alumna with 17 years of bugs in industry

❖ 9 TAs:

▪ Deeksha Vatwani, Hannah Jiang, Jennifer Xu, Justin Tysdal,
Leanna Nguyen, Sayuj Shahi, Wei Wu, Yiqing Wang, and Youssef
ben Taleb

▪ Available in section, office hours, and discussion group

▪ An invaluable source of information and help

❖ Get to know us

▪ We are here to help you succeed!

4

CSE333, Autumn 2024L01: Intro, C

Introductions: Students

❖ ~185 students this quarter

❖ Expected background

▪ Prereq: CSE 351 – C, pointers, memory model, linker, system calls

▪ CSE 391 or Linux skills needed for CSE 351 assumed

5

CSE333, Autumn 2024L01: Intro, C

Introductions: Students

❖ ~185 students this quarter

▪ Easier to feel lost, as if
everyone is "better" than you

❖ “Nearly 70% of individuals will
experience signs and symptoms
of impostor phenomenon at
least once in their life.”
▪ https://en.wikipedia.org/wiki/Imp

ostor_syndrome

❖ Our course size can be an
asset!

6

https://en.wikipedia.org/wiki/Impostor_syndrome

CSE333, Autumn 2024L01: Intro, C

Course Map: 100,000 foot view

7

C application

C standard
library (glibc)

C++ STL/boost/
standard library

C++ application Java application

JRE

CPU memory storage network
GPU clock audio radio peripherals

HW/SW interface
(x86 + devices)

OS / app interface
(system calls)

operating system

hardware

CSE333, Autumn 2024L01: Intro, C

Systems Programming

❖ The programming skills, knowledge, and engineering
discipline you need to build a system

▪ Programming: C / C++

▪ Knowledge: long list of interesting topics

• Concurrency, OS interfaces and semantics, techniques for consistent
data management, distributed systems algorithms, …

• Most important: a deep(er) understanding of the “layer below”

▪ Discipline: testing, debugging, performance analysis

8

CSE333, Autumn 2024L01: Intro, C

Discipline?!?

❖ Cultivate good habits, encourage clean code

▪ Coding style conventions

▪ Unit testing, code coverage testing, regression testing

▪ Documentation (code comments, design docs)

▪ Code reviews

❖ Will take you a lifetime to learn

▪ But oh-so-important, especially for systems code

• Avoid write-once, read-never code

9

CSE333, Autumn 2024L01: Intro, C

Lecture Outline

❖ Course Introduction

❖ Course Policies

❖ C Intro

10

CSE333, Autumn 2024L01: Intro, C

This is Only an Overview!

❖ https://courses.cs.washington.edu/courses/cse333/24au/
syllabus.html

❖ This is just the summary/highlights

▪ … but you must read the full details online!

11

https://courses.cs.washington.edu/courses/cse333/24au/syllabus.html

CSE333, Autumn 2024L01: Intro, C

Communication

❖ Website: http://cs.uw.edu/333

▪ Schedule, policies, materials, assignments, etc.

❖ Office Hours: spread throughout the week

▪ Schedule posted shortly and will start as soon as we can

❖ One-on-ones: by appointment

▪ Send us a message with your availability in the next 3 days

▪ Do not expect a response in less than 24 hours!

12

http://cs.uw.edu/333

CSE333, Autumn 2024L01: Intro, C

Communication

❖ Messages to staff: things unsuitable for Ed chat or Gradescope
regrade requests
▪ Please send email to cse333-staff@cs.uw.edu. Reaches all staff so the

right person can help out quickly, and helps follow up until resolved

▪ (don’t email to instructor or individual TAs if possible – we can get quick
answers for you and coordinate better if it goes to the staff

❖ Discussion: Ed group linked to course home page
▪ Ask and answer questions – staff will monitor and contribute

▪ Use private messages for questions about detailed code, etc.

❖ Announcements: will use broadcast Ed messages to send
“things everyone must read and know”

13

mailto:cse333-staff@cs.uw.edu

CSE333, Autumn 2024L01: Intro, C

Course Components

❖ Lectures (~28)
▪ Introduce the concepts; take notes!!!

❖ Sections (10)
▪ Applied concepts, important tools and skills for assignments,

clarification of lectures, exam review and preparation

❖ Final exam, but no midterm

▪ Goal is to revisit and internalize concepts

14

CSE333, Autumn 2024L01: Intro, C

GRADED Course Components

❖ Programming Exercises (~18)
▪ Roughly one per lecture, due the morning before the next lecture

▪ Coarse-grained grading (check plus/check/check minus = 1, 2, 3, or 4)

❖ Programming Projects (0+4)
▪ Warmup, then 4 “homeworks” that build on each other

❖ Lecture Activities (huge variance but can assume >50)
▪ In-class polls graded on completion not correctness

▪ Must be completed during class time; can miss up to 20% of them

15

CSE333, Autumn 2024L01: Intro, C

Grading (tentative)

❖ Exercises: ~35%
▪ Submitted via Gradescope

▪ Evaluated on correctness and code quality, roughly equally

▪ We drop the lowest scoring exercise

❖ Homeworks: ~35%
▪ Submitted via GitLab; must tag the commit that you want graded

▪ Evaluated on correctness and code quality, roughly equally

▪ Binaries provided if you didn’t get previous part working or prefer to start
with a known good solution to previous parts

16

CSE333, Autumn 2024L01: Intro, C

Grading (tentative)

❖ Lecture Activities: ~15%
▪ Actively paying attention during lecture is correlated to good grades

▪ … as does attending lecture synchronously

❖ Final: ~15%
▪ No midterm!

17

CSE333, Autumn 2024L01: Intro, C

Deadlines and Student Conduct

❖ Late policies

▪ Exercises: no late submissions accepted, due 10 am before class

▪ Projects: 4 late days for entire quarter, max 2 per project

▪ Need to get things done on time – difficult to catch up!

• But we will work with you if unusual circumstances / problems

❖ Academic Integrity (read the full policy on the web)

▪ This does not mean suffer in silence – learn from the course staff
and peers, talk, share ideas; but don’t share or copy work that is
supposed to be yours

18

CSE333, Autumn 2024L01: Intro, C

And Off We Go…

❖ Goal is to figure out setup and computing infrastructure
right away so we don’t put that off and then have a
crunch later in the quarter

❖ So:

▪ First exercise out today, due Monfsy morning 10 am before class

▪ Warmup/logistics for larger projects in sections Thursday

• HW0 (the warmup project) published tomorrow and gitlab repos
created then. OK to ignore details until sections tomorrow and we’ll
walk through the whole thing, but read up ahead of time and maybe
try some of the initial setup before section.

• Bring a laptop to sections! We may have time to go through some of
the initial configuration parts for hw0.

19

CSE333, Autumn 2024L01: Intro, C

Gadgets (1)

❖ Gadgets reduce focus and learning

▪ Bursts of info (e.g. emails, IMs, notifications, etc.) are addictive

▪ Heavy multitaskers have more trouble focusing and shutting out
irrelevant information

• http://www.npr.org/2016/04/17/474525392/attention-students-put-
your-laptops-away

▪ Seriously, you will learn more if you use paper instead!!!

• (even compared to note-taking on a tablet, although that is better than
a keyboard, and that is way better than just “watching the show”)

20

http://www.npr.org/2016/04/17/474525392/attention-students-put-your-laptops-away

CSE333, Autumn 2024L01: Intro, C

Gadgets (2)

❖ So how should we deal with laptops/phones/etc.?

▪ Just say no!

▪ No open gadgets during class (really!)
• Unless you’re actually using a tablet or something to take notes

▪ Urge to search? – ask a question! Everyone benefits!!

▪ You may close/turn off non-notetaking electronic devices now

▪ Pull out a piece of paper and pen/pencil instead ☺

21

CSE333, Autumn 2024L01: Intro, C

Deep Breath….

❖ Any questions, comments, observations, before we go on
to, uh, some technical stuff?

22

CSE333, Autumn 2024L01: Intro, C

Lecture Outline

❖ Course Introduction

❖ Course Policies
▪ https://courses.cs.washington.edu/courses/cse333/24sp/syllabus.html

❖ C Intro

▪ Workflow, Variables, Functions

23

CSE333, Autumn 2024L01: Intro, C

C

❖ Created in 1972 by Dennis Ritchie

▪ Designed for creating system software

▪ Portable across machine architectures

▪ More recently updated in 1999 (C99) and 2011 (C11)
and 2017 (C17)

❖ Characteristics

▪ “Low-level” language that allows us to exploit underlying features
of the architecture – but easy to fail spectacularly (!)

▪ Procedural (not object-oriented)

▪ Typed but unsafe (possible to bypass the type system)

▪ Small, basic library compared to Java, C++, most others….

24

CSE333, Autumn 2024L01: Intro, C

Generic C Program Layout

25

#include <system_files>

#include "local_files"

#define macro_name macro_expr

/* declare functions */

/* declare external variables & structs */

int main(int argc, char* argv[]) {

/* the innards */

}

/* define other functions */

CSE333, Autumn 2024L01: Intro, C

C Syntax: main

❖ To get command-line arguments in main, use:

▪ int main(int argc, char* argv[])

❖ What does this mean?

▪ argc contains the number of strings on the command line (the

executable name counts as one, plus one for each argument).

▪ argv is an array containing pointers to the arguments as strings

(more on pointers later)

❖ Example: $./foo hello 87

▪ argc = 3

▪ argv[0]="./foo", argv[1]="hello", argv[2]="87"

26

int main(int argc, char* argv[])

CSE333, Autumn 2024L01: Intro, C

C Workflow

Editor (emacs, vi) or IDE (eclipse)

27

Source files
(.c, .h)

Object files (.o)

“COMPILE” (compile + assemble)

LINK

LOAD

EXECUTE, DEBUG, …

EDIT

foo.c bar.cfoo.h

foo.o bar.o
libZ.a

bar

Statically-linked
libraries

bar

LINK

libc.soShared libraries

LINK

CSE333, Autumn 2024L01: Intro, C

C to Machine Code

28

C source file
(sumstore.c)

Assembly file
(sumstore.s)

C compiler (gcc –S)

Assembler (gcc -c or as)

EDIT

void sumstore(int x, int y,

int* dest) {

*dest = x + y;

}

sumstore:

addl %edi, %esi

movl %esi, (%rdx)

ret

Machine code
(sumstore.o)

400575: 01 fe

89 32

c3

C compiler
(gcc –c)

CSE333, Autumn 2024L01: Intro, C

When Things Go South…

❖ Errors and Exceptions
▪ C does not have exception handling (no try/catch)

▪ Errors are returned as integer error codes from functions

▪ Because of this, error handling is ugly and inelegant

❖ Processes return an “exit code” when they terminate

▪ Can be read and used by parent process (shell or other)

• In main: return EXIT_SUCCESS; or return EXIT_FAILURE; (e.g., 0 or 1)

❖ Crashes

▪ If you do something bad, you hope to get a “segmentation fault”
(believe it or not, this is the “good” option)

29

CSE333, Autumn 2024L01: Intro, C

pollev.com/uwcse333

30

❖ Are Java and C mostly similar (S) or significantly different
(D) in the following categories?

▪ List any differences you can recall (even if you put ‘S’)

Language Feature S/D Differences in C

Control structures

Primitive datatypes

Operators

Casting

Arrays

Memory management

CSE333, Autumn 2024L01: Intro, C

Java vs. C (351 refresher)

❖ Are Java and C mostly similar (S) or significantly different
(D) in the following categories?

▪ List any differences you can recall (even if you put ‘S’)

32

Language Feature S/D Differences in C

Control structures S

Primitive datatypes S/D Similar but sizes can differ (char, esp.), unsigned,
no boolean, uninitialized data, …

Operators S Java has >>>, C has ->

Casting D Java enforces type safety, C does not

Arrays D Not objects, don’t know their own length, no
bounds checking

Memory management D Manual (malloc/free), no garbage collection

CSE333, Autumn 2024L01: Intro, C

Primitive Types in C

❖ Integer types
▪ char, int

❖ Floating point
▪ float, double

❖ Modifiers
▪ short [int]

▪ long [int, double]

▪ signed [char, int]

▪ unsigned [char, int]

33

C Data Type 32-bit 64-bit printf

char 1 1 %c

short int 2 2 %hd

unsigned short int 2 2 %hu

int 4 4 %d / %i

unsigned int 4 4 %u

long int 4 8 %ld

long long int 8 8 %lld

float 4 4 %f

double 8 8 %lf

long double 12 16 %Lf

pointer 4 8 %p

Typical sizes – see sizeofs.c

CSE333, Autumn 2024L01: Intro, C

C99 Extended Integer Types

❖ Solves the conundrum of “how big is an long int?”

34

void sumstore(int x, int y, int* dest) {

void sumstore(int32_t x, int32_t y, int32_t* dest) {

#include <stdint.h>

void foo(void) {

int8_t a; // exactly 8 bits, signed

int16_t b; // exactly 16 bits, signed

int32_t c; // exactly 32 bits, signed

int64_t d; // exactly 64 bits, signed

uint8_t w; // exactly 8 bits, unsigned

...

}
Use extended types in most cse333 code

But int is usually fine for simple counters

CSE333, Autumn 2024L01: Intro, C

Basic Data Structures

❖ C does not support objects!!!

❖ Arrays are contiguous chunks of memory
▪ Arrays have no methods and do not know their own length

▪ Can easily run off ends of arrays in C – security bugs!!!

❖ Strings are null-terminated char arrays
▪ Strings have no methods, but string.h has helpful utilities

❖ Structs are the most object-like feature, but are just collections
of fields – no “methods” or functions

• (but can contain pointers to functions!)

35

x h e l l o \n \0char* x = "hello\n";

CSE333, Autumn 2024L01: Intro, C

Function Definitions

❖ Generic format:

36

// sum of integers from 1 to max

int sumTo(int max) {

int i, sum = 0;

for (i = 1; i <= max; i++) {

sum += i;

}

return sum;

}

returnType fname(type param1, …, type paramN) {

// statements

}

CSE333, Autumn 2024L01: Intro, C

Function Ordering

❖ You shouldn’t call a function that hasn’t been declared yet

37

#include <stdio.h>

int main(int argc, char** argv) {

printf("sumTo(5) is: %d\n", sumTo(5));

return 0;

}

// sum of integers from 1 to max

int sumTo(int max) {

int i, sum = 0;

for (i = 1; i <= max; i++) {

sum += i;

}

return sum;

}

sum_badorder.c

CSE333, Autumn 2024L01: Intro, C

Solution 1: Reverse Ordering

❖ Simple solution; however, imposes ordering restriction on
writing functions (who-calls-what?)

38

#include <stdio.h>

// sum of integers from 1 to max

int sumTo(int max) {

int i, sum = 0;

for (i = 1; i <= max; i++) {

sum += i;

}

return sum;

}

int main(int argc, char** argv) {

printf("sumTo(5) is: %d\n", sumTo(5));

return 0;

}

sum_betterorder.c

CSE333, Autumn 2024L01: Intro, C

Solution 2: Function Declaration

❖ Teaches the compiler arguments and return types;
function definitions can then be in a logical order

39

sum_declared.c #include <stdio.h>

int sumTo(int); // func prototype

int main(int argc, char** argv) {

printf("sumTo(5) is: %d\n", sumTo(5));

return 0;

}

// sum of integers from 1 to max

int sumTo(int max) {

int i, sum = 0;

for (i = 1; i <= max; i++) {

sum += i;

}

return sum;

}

Code examples from
slides are on the course

web for you to
experiment with!

CSE333, Autumn 2024L01: Intro, C

Declaration vs. Definition

❖ C/C++ make a careful distinction between these two

❖ Definition: the thing itself

▪ e.g. code for function, variable definition that creates storage

▪ Must be exactly one definition of each thing (no duplicates)

❖ Declaration: description of a thing defined elsewhere

▪ e.g. function prototype, external variable declaration

• Often in header files and incorporated via #include

• Should also #include declaration in the file with the actual
definition to check for consistency

▪ Needs to appear in all files that use the thing

• Should appear before first use
40

CSE333, Autumn 2024L01: Intro, C

Multi-file C Programs

41

void sumstore(int x, int y, int* dest) {

*dest = x + y;

}

#include <stdio.h>

void sumstore(int x, int y, int* dest);

int main(int argc, char** argv) {

int z, x = 351, y = 333;

sumstore(x,y,&z);

printf("%d + %d = %d\n",x,y,z);

return 0;

}

C source file 1
(sumstore.c)

C source file 2
(sumnum.c)

Compile together:
$ gcc -o sumnum sumnum.c sumstore.c

definition

declaration

CSE333, Autumn 2024L01: Intro, C

Compiling Multi-file Programs

❖ The linker combines multiple object files plus statically-
linked libraries to produce an executable
▪ Includes many standard libraries (e.g. libc, crt1)

• A library is just a pre-assembled collection of .o files

42

sumstore.c

sumnum.c

sumstore.o

sumnum.o

libraries
(e.g. libc)

sumnum

gcc -c

gcc -c

ld or
gcc

CSE333, Autumn 2024L01: Intro, C

pollev.com/uwcse333

43

❖ Which of the following statements is FALSE?

A. With the standard main() syntax, It is always safe
to use argv[0].

B. We can’t use uint64_t on a 32-bit machine
because there isn’t a C integer primitive of that
length.

C. Using function declarations is beneficial to both
single- and multi-file C programs.

D. When compiling multi-file programs, not all linking is
done by the Linker.

E. We’re lost…

CSE333, Autumn 2024L01: Intro, C

To-do List

❖ Explore the website thoroughly: http://cs.uw.edu/333

❖ Computer setup: CSE labs, attu, or CSE Linux VM

❖ Exercise 0 is due 10 am sharp before Monday's class

▪ Find exercise spec on website, submit via Gradescope

▪ Sample solution will be posted Monday after class

▪ Give it your best shot

❖ Project repos created and hw0 out tomorrow

▪ Ask questions on Ed!

▪ More questions? Bring them (and your laptop) to section

44

http://cs.uw.edu/333

