W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2023

@ PO" Evel‘yWhel‘e pollev.com/cse333

About how long did Exercise 11 take you?

"moowR

[2, 4) hours

[4, 6) hours

[6, 8) hours

8+ Hours

| didn’t submit / | prefer not to say

W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2023

Concurrency: Processes
CSE 333 Summer 2023

Instructor: Timmy Yang

Teaching Assistants:
Jennifer Xu Leanna Nguyen Pedro Amarante
Sara Deutscher Tanmay Shah

W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2023

Relevant Course Information

+ Exercise 12 due Monday (8/14) @ 11:00-am

| (oo ™
+» Homework 4 due Wednesday (8/16) @ 11:59 pm
= Submissions accepted until Friday (8/18) @ 11:59 pm

%+ Quiz 4 (Wednesday, 8/16 — Friday, 8/18)
= Same policies as previous quizzes

= ex10-ex12, hw4, overall course questions!

W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2023

Outline

« We’ll look at different searchserver implementations
= Sequential
" Concurrent via forking threads —pthread create ()
" Concurrent via forking processes — fork ()

+ Reference: Computer Systems: A Programmer’s
Perspective, Chapter 12 (CSE 351 book)

W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2023

Aside: Thinking about Threads

+ Recall: More instructions per thread = higher likelihood of
interleaving

= Even seemingly simple lines can interleave in strange ways.

+ Let’s look at the following example...

W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2023

Aside: Thinking about Threads

3__.. l 3—’, b J—‘- é
+» What are some possible outputs? A= , 9212, ﬁ=7
» What’s the range of possible outputs? S22 4z(2

v v A

rintg=0;é—--— MW;IL
voilid *worker (void *ignore) {
for (int k = 1; k <= 3; k++) {
g=9 + k; &4

}

printf ("g = %d\n", qg);

return NULL;

}

mﬂ(ﬂ.:.l ?

int main () {
pthread t tl1, t2;

int ignore;
ignore = pthread create (&tl, NULL,/ &worker,)NULL) ;
ignore = pthread create (&t2, NULL,\&worker,/ NULL) ;

pthread join(tl, NULL);
pthread join(t2, NULL);
return EXIT SUCCESS;

YW UNIVERSITY of WASHINGTON L23: Concurrency and Processes

Aside: Thinking about Threads

+» What are some possible outputs?

" g=6/g=12|g=12/g=12|g=7/g=9|g=6/g=11

CSE333, Summer 2023

(int g = 0;
volid *worker (void *ignore) {
for (int k = 1; k <= 3; k++) {
g =9t k;
}
printf ("g = %d\n", g);
return NULL;
}

int main() {

pthread t tl1, t2;

int ignore;

ignore = pthread create(&tl, NULL, &worker, NULL);
ignore = pthread create (&t2, NULL, &worker, NULL);
pthread join(tl, NULL);

pthread join(t2, NULL);

return EXIT SUCCESS;

W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2023

Aside: Thinking about Threads

+ What's the range of possible outputs?
" g=1[412]

(int g = 0;
volid *worker (void *ignore) {
for (int k = 1; k <= 3; k++) {
g =9t k;
}
printf ("g = %d\n", g);
return NULL;
}

int main() {

pthread t tl1, t2;

int ignore;

ignore = pthread create(&tl, NULL, &worker, NULL);
ignore = pthread create (&t2, NULL, &worker, NULL);
pthread join(tl, NULL);

pthread join(t2, NULL);

return EXIT SUCCESS;

W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2023

Interleaving at the Instruction Level

+» Context-switching can happen between any instruction.

Instructions for g = g + k:

mov Ox2ebf (Srip), sedx == | 0ads global g into local register

mov -0x4 (3rbp) , seax 4= | 0ads Kk into %eax register

add sedx, seax == Adds copy of gin %edx to %ecax register
mov seax, 0x2ebd (Srip) +== Stores addition result back into global g

+» Why does this matter?

= Remember, each thread has its own Stack and register values.
- Allows for %rax to be used between multiple threads as a return reg.

YA UNIVERSITY of WASHINGTON

How to Get 4

Load 1
into reg

Write g=4

N

g<=reg1+2/
y /

<«

Thread 1

regl € g

g < regl +1

regl « g

regl € g

/|

L23: Concurrency and Processes

Thread 2

l,regZ < g

CSE333, Summer 2023

Load Ointo reg

g & reg2 + 1 Writeg=1

reg2 & g
g & reg2

reg2 <« g

A
g<=reg1+3\é\" g &€ reg2

g:

4

+

+

10

W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2023

Outline

« We’ll look at different searchserver implementations
= Sequential
" Concurrent via forking threads —pthread create ()
= Concurrent via forking processes — fork ()

+ Reference: Computer Systems: A Programmer’s
Perspective, Chapter 12 (CSE 351 book)

11

W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2023

Why Concurrent Processes?

+» Advantages:

" Processes are isolated from one another
- No shared memory between processes
- If one crashes, the other processes keep going

"= No need for language support (OS provides fork)

+» Disadvantages:

" Processes are heavyweight
- Relatively slow to fork
- Context switching latency is high

= Communication between processes is complicated

12

W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2023

Process Isolation

+ Process Isolation is a set of mechanisms implemented to
protect processes from each other and protect the kernel
from user processes.

" Processes have separate address spaces
" Processes have privilege levels to restrict access to resources
" |f one process crashes, others will keep running

% Inter-Process Communication (IPC) is limited, but possible

% Pipes via pipe ()
= Sockets via socketpair ()
" Shared Memory via shm open ()

13

W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2023

Creating New Processes (Review)

pid t fork();

" Creates a child process that is an exact clone (except threads) of
the current/parent process

® Child process has a separate virtual address space from the parent

+« fork () has peculiar semantics

" The parent invokes fork ()

14

W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2023

Creating New Processes (Review)

pid t fork();

" Creates a child process that is an exact clone (except threads) of
the current/parent process

® Child process has a separate virtual address space from the parent

+« fork () has peculiar semantics

" The parent invokes fork ()
paren
" The OS clones the parent

clone

-~

OS

15

YA UNIVERSITY of WASHINGTON L23: Concurrency and Processes

CSE333, Summer 2023

Creating New Processes (Review)

« | p1d t fork():;

" Creates a child process that is an exact clone (except threads) of
the current/parent process

® Child process has a separate virtual address space from the parent

+« fork () has peculiar semantics

" The parent invokes fork ()

" The OS clones the parent

= Both the parent and the child child pid
return from fork

- Parent receives child’s pid
- Child receives a 0

16

YA UNIVERSITY of WASHINGTON

L23: Concurrency and Processes

fork () and Address Spaces

D)

» Fork causes the OS
to clone the SE
address space

" The copies of the
memory segments are

(nearly) identical

% The new process has
copies of the parent’s
data, stack-allocated
variables, open file
descriptors, etc.

PARENT

SP

fork ()

CSE333, Summer 2023

CHILD

17

W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2023

Zombies (Review)

+ When a process terminates, its resources (e.g., its address
space) hang around as the process sits in a zombie state

" Process terminates by return frommain or calling exit ()

+» A zombie process needs to be reaped

" Done automatically when its parent process terminates

= Can be done explicitly by its parent process by calling wait () or
waitpid (), which also returns the status code

= |f the parent process terminates before the child becomes a
zombie, then init/systemd is responsible for reaping it

+ See fork example.cc

= ps -u displays the user’s currently running processes
18

W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2023

Main Uses of fork

+ Fork a child to handle some work
= e.g., server forks to handle a new connection

= e.g., web browser forks to render a new website .
(for security purposes)

+ Fork a child that then starts a new program via execv

" e.g., a shell forks and starts the program you want to run

= e.g., the 333 grading scripts fork and exec your
executable

+ Fork a background (“daemon”) process that runs
independently

19

W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2023

Concurrent Server with Processes

+ The parent process blocks on accept (), waiting for a
new client to connect

" When a new connection arrives, the parent calls fork () to
create a child process

" The child process handles that new connection and exit ()’s
when the connection terminates

+ How do we avoid zombie processes from consuming aII of
our memory?
i y - “" ” . L\Dbk u Cf(SL\
= Option A: Parent callswait () to “reap” children c\’“ v
= QOption B: Use a double-fork trick

20

W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2023

Double-fork Trick

21

W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2023

Double-fork Trick

o
%
G
g

22

W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2023

Double-fork Trick

~

S fork () child

23

W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2023

Double-fork Trick

S, fork () grandchild

24

W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2023

Double-fork Trick

- BN // Grravderitd

E child exit ()’s/parentwait ()’s

whew parent wait()’s
for child, the child will
be cleaned np

25

W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2023

Double-fork Trick

m parent closes its
client connection

26

W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2023

Double-fork Trick

27

W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2023

Double-fork Trick

:) fork () child

-

~ ~, fork () grandchild
-~ exit()

28

W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2023

Double-fork Trick

29

W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2023

Double-fork Trick

. — L
~— B

30

W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2023

@ PO" Evel‘yWhel‘e pollev.com/cse333

What will happen when one of the
grandchildren processes finishes?

>(30"/\’"‘”* ace pt)

(oop, WEVY EF €5

B, Zombie until grandparent reaps 2
B Nt 'H%?cﬂﬂf

@ Zombie until init reaps qrocess
75\. ZOMBIE FOREVER!!!

E. We're lost...

31

W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2023

Concurrent with Processes Pseudocode

+ See searchserver processes/

[// Server set up)

while (1) {
sock fd = accept()
pid = fork();
1f (pid == 0) {
// ??? process

} else {
// ??? process

W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2023

Concurrent with Processes Pseudocode

+ See searchserver processes/

[// Server set up)

while (1) {
sock fd = accept()
pid = fork();
1f (pid == 0) {
// Child process

} else {
// Parent process

W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2023

Concurrent with Processes Pseudocode

+ See searchserver processes/

[// Server set up)

while (1) {
sock fd = accept()

pid = fork();

if (pid == 0) {
// Child process
pid = fork();
if (pid == 0) {

// ??? process

} else {
// Parent process

W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2023

Concurrent with Processes Pseudocode

+ See searchserver processes/

[// Server set up)

while (1) {
sock fd = accept()
pid = fork();
if (pid == 0) f{
// Child process
pid = fork();
if (pid == 0) f{
// Grand-child process
HandleClient (sock fd, ...);

}

} else {
// Parent process

CSE333, Summer 2023

YW UNIVERSITY of WASHINGTON L23: Concurrency and Processes

Concurrent with Processes Pseudocode

+ See searchserver processes/

7

// Server set up
while (1) {
sock fd = accept()

pid = fork();

if (pid == 0) {
// Child process
pid = fork();
if (pid == 0) {

// Grand-child process
HandleClient (sock fd, ...);
}
// Clean up resources...
exit();
} else {
// Parent process

W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2023

Concurrent with Processes Pseudocode

+ See searchserver processes/

7

// Server set up
while (1) {
sock fd = accept()
pid = fork();
if (pid == 0) {
// Child process
pid = fork();
if (pid == 0) {
// Grand-child process
HandleClient (sock fd, ...);
}
// Clean up resources...
exit();
} else {
// Parent process
// Wait for child to immediately die
wait () ;
close (sock fd);

W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2023

How Fast is fork () ?

+ See fork latency.cc

+» ~0.26 milliseconds per fork*

= .. maximum of (1000/0.5) = 3,800 connections/sec/core
= ~332 million connections/day/core

« This is fine for most servers

- Too slow for super-high-traffic front-line web services

— Facebook served ~750 billion page views per day in 2013
Would need 2-3k cores just to handle fork (), i.e. without doing any work

for each connection

*Past measurements are not indicative of future performance — depends on hardware, OS,
software versions, ...

Tested on attu4 (3/5/2022)

38

YW UNIVERSITY of WASHINGTON L23: Concurrency and Processes

How Fastis pthread create()?

+ See thread latency.cc

+» ~0.02 milliseconds per thread creation*
= ~13x faster than fork ()

= .. maximum of (1000/0.02) = 50,000 connections/sec/core
= ~4.3 billion connections/day/core

= Mush faster, but writing safe multithreaded code can be serious
voodoo, as we’ve seen

*Past measurements are not indicative of future performance — depends on hardware, OS,
software versions, ..., but will typically be an order of magnitude faster than fork()
Tested on attu4 (3/5/2022)

CSE333, Summer 2023

39

W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2023

Outline (Revisited)

« We’ll look at different searchserver implementations

= Sequential
" Concurrent via forking threads —pthread create ()

" Concurrent via forking processes — fork ()

« Conclusions:
" Concurrent execution leads to better CPU, network utilization

= Writing concurrent software can be tricky and different
concurrency methods have benefits and drawbacks

« In real servers, we’d like to avoid the overhead needed to
create a new thread or process for every request... how?

40

W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2023

Aside: Thread Pools

+ ldea:
= Create a fixed set of worker threads when the server starts
= When a request arrives, add it to a queue of tasks (using locks)
" Each thread tries to remove a task from the queue (using locks)

" When a thread is finished with one task, it tries to get a new task
from the queue (using locks)

+ A thread pool is written for you in Homework 4!

" Feel free to take a look, if curious

41

	Slide 1: About how long did Exercise 11 take you?
	Slide 2: Concurrency: Processes CSE 333 Summer 2023
	Slide 3: Relevant Course Information
	Slide 4: Outline
	Slide 5: Aside: Thinking about Threads
	Slide 6: Aside: Thinking about Threads
	Slide 7: Aside: Thinking about Threads
	Slide 8: Aside: Thinking about Threads
	Slide 9: Interleaving at the Instruction Level
	Slide 10: How to Get 4
	Slide 11: Outline
	Slide 12: Why Concurrent Processes?
	Slide 13: Process Isolation
	Slide 14: Creating New Processes (Review)
	Slide 15: Creating New Processes (Review)
	Slide 16: Creating New Processes (Review)
	Slide 17: fork() and Address Spaces
	Slide 18: Zombies (Review)
	Slide 19: Main Uses of fork
	Slide 20: Concurrent Server with Processes
	Slide 21: Double-fork Trick
	Slide 22: Double-fork Trick
	Slide 23: Double-fork Trick
	Slide 24: Double-fork Trick
	Slide 25: Double-fork Trick
	Slide 26: Double-fork Trick
	Slide 27: Double-fork Trick
	Slide 28: Double-fork Trick
	Slide 29: Double-fork Trick
	Slide 30: Double-fork Trick
	Slide 31: What will happen when one of the grandchildren processes finishes?
	Slide 32: Concurrent with Processes Pseudocode
	Slide 33: Concurrent with Processes Pseudocode
	Slide 34: Concurrent with Processes Pseudocode
	Slide 35: Concurrent with Processes Pseudocode
	Slide 36: Concurrent with Processes Pseudocode
	Slide 37: Concurrent with Processes Pseudocode
	Slide 38: How Fast is fork()?
	Slide 39: How Fast is pthread_create()?
	Slide 40: Outline (Revisited)
	Slide 41: Aside: Thread Pools

