
CSE333, Summer 2023L23: Concurrency and Processes

1

pollev.com/cse333

About how long did Exercise 11 take you?

A. [0, 2) hours
B. [2, 4) hours
C. [4, 6) hours
D. [6, 8) hours
E. 8+ Hours
F. I didn’t submit / I prefer not to say

CSE333, Summer 2023L23: Concurrency and Processes

Concurrency: Processes
CSE 333 Summer 2023

Instructor: Timmy Yang

Teaching Assistants:

Jennifer Xu Leanna Nguyen Pedro Amarante

Sara Deutscher Tanmay Shah

CSE333, Summer 2023L23: Concurrency and Processes

Relevant Course Information

❖ Exercise 12 due Monday (8/14) @ 11:00 am

❖ Homework 4 due Wednesday (8/16) @ 11:59 pm

▪ Submissions accepted until Friday (8/18) @ 11:59 pm

❖ Quiz 4 (Wednesday, 8/16 – Friday, 8/18)

▪ Same policies as previous quizzes

▪ ex10-ex12, hw4, overall course questions!

3

CSE333, Summer 2023L23: Concurrency and Processes

Outline

❖ We’ll look at different searchserver implementations

▪ Sequential

▪ Concurrent via forking threads – pthread_create()

▪ Concurrent via forking processes – fork()

▪

•

❖ Reference: Computer Systems: A Programmer’s
Perspective, Chapter 12 (CSE 351 book)

4

CSE333, Summer 2023L23: Concurrency and Processes

Aside: Thinking about Threads

❖ Recall: More instructions per thread = higher likelihood of
interleaving

▪ Even seemingly simple lines can interleave in strange ways.

❖ Let’s look at the following example…

5

CSE333, Summer 2023L23: Concurrency and Processes

Aside: Thinking about Threads

❖ What are some possible outputs?

❖ What’s the range of possible outputs?

6

int g = 0;

void *worker(void *ignore) {

 for (int k = 1; k <= 3; k++) {

 g = g + k;

 }

 printf("g = %d\n", g);

 return NULL;

}

int main() {

 pthread_t t1, t2;

 int ignore;

 ignore = pthread_create(&t1, NULL, &worker, NULL);

 ignore = pthread_create(&t2, NULL, &worker, NULL);

 pthread_join(t1, NULL);

 pthread_join(t2, NULL);

 return EXIT_SUCCESS;

}

CSE333, Summer 2023L23: Concurrency and Processes

Aside: Thinking about Threads

❖ What are some possible outputs?

▪ g = 6/g = 12 | g = 12/g = 12 | g = 7/g = 9 | g = 6/g = 11

7

int g = 0;

void *worker(void *ignore) {

 for (int k = 1; k <= 3; k++) {

 g = g + k;

 }

 printf("g = %d\n", g);

 return NULL;

}

int main() {

 pthread_t t1, t2;

 int ignore;

 ignore = pthread_create(&t1, NULL, &worker, NULL);

 ignore = pthread_create(&t2, NULL, &worker, NULL);

 pthread_join(t1, NULL);

 pthread_join(t2, NULL);

 return EXIT_SUCCESS;

}

CSE333, Summer 2023L23: Concurrency and Processes

Aside: Thinking about Threads

❖ What’s the range of possible outputs?

▪ g = [4, 12]

8

int g = 0;

void *worker(void *ignore) {

 for (int k = 1; k <= 3; k++) {

 g = g + k;

 }

 printf("g = %d\n", g);

 return NULL;

}

int main() {

 pthread_t t1, t2;

 int ignore;

 ignore = pthread_create(&t1, NULL, &worker, NULL);

 ignore = pthread_create(&t2, NULL, &worker, NULL);

 pthread_join(t1, NULL);

 pthread_join(t2, NULL);

 return EXIT_SUCCESS;

}

CSE333, Summer 2023L23: Concurrency and Processes

Interleaving at the Instruction Level

❖ Context-switching can happen between any instruction.

❖ Why does this matter?

▪ Remember, each thread has its own Stack and register values.

• Allows for %rax to be used between multiple threads as a return reg.

9

Instructions for g = g + k:

mov 0x2ebf(%rip),%edx

mov -0x4(%rbp),%eax

add %edx,%eax

mov %eax,0x2eb4(%rip)

Loads global g into local register

Stores addition result back into global g

Loads k into %eax register
Adds copy of g in %edx to %eax register

CSE333, Summer 2023L23: Concurrency and Processes

How to Get 4

10

reg2 ⇐ g

g ⇐ reg2 + 1

reg2 ⇐ g

g ⇐ reg2 + 2

reg2 ⇐ g

g ⇐ reg2 + 3

reg1 ⇐ g

g ⇐ reg1 + 1

reg1 ⇐ g

g ⇐ reg1 + 2

reg1 ⇐ g

g ⇐ reg1 + 3

Thread 1

g = 4

Thread 2

Load 0 into reg

Write g=1

Load 1
into reg

Write g=4

CSE333, Summer 2023L23: Concurrency and Processes

Outline

❖ We’ll look at different searchserver implementations

▪ Sequential

▪ Concurrent via forking threads – pthread_create()

▪ Concurrent via forking processes – fork()

▪

•

❖ Reference: Computer Systems: A Programmer’s
Perspective, Chapter 12 (CSE 351 book)

11

CSE333, Summer 2023L23: Concurrency and Processes

Why Concurrent Processes?

❖ Advantages:

▪ Processes are isolated from one another

• No shared memory between processes

• If one crashes, the other processes keep going

▪ No need for language support (OS provides fork)

❖ Disadvantages:

▪ Processes are heavyweight

• Relatively slow to fork

• Context switching latency is high

▪ Communication between processes is complicated

12

CSE333, Summer 2023L23: Concurrency and Processes

Process Isolation

❖ Process Isolation is a set of mechanisms implemented to
protect processes from each other and protect the kernel
from user processes.

▪ Processes have separate address spaces

▪ Processes have privilege levels to restrict access to resources

▪ If one process crashes, others will keep running

❖ Inter-Process Communication (IPC) is limited, but possible
▪ Pipes via pipe()

▪ Sockets via socketpair()

▪ Shared Memory via shm_open()

13

CSE333, Summer 2023L23: Concurrency and Processes

Creating New Processes (Review)

❖

▪ Creates a child process that is an exact clone (except threads) of
the current/parent process

▪ Child process has a separate virtual address space from the parent

❖ fork() has peculiar semantics

▪ The parent invokes fork()

14

pid_t fork();

parent

OS

fork()

CSE333, Summer 2023L23: Concurrency and Processes

Creating New Processes (Review)

❖

▪ Creates a child process that is an exact clone (except threads) of
the current/parent process

▪ Child process has a separate virtual address space from the parent

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

15

pid_t fork();

parent child

OS

clone

CSE333, Summer 2023L23: Concurrency and Processes

Creating New Processes (Review)

❖

▪ Creates a child process that is an exact clone (except threads) of
the current/parent process

▪ Child process has a separate virtual address space from the parent

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child
return from fork

• Parent receives child’s pid

• Child receives a 0

16

pid_t fork();

parent child

OS

child pid 0

CSE333, Summer 2023L23: Concurrency and Processes

fork() and Address Spaces

❖ Fork causes the OS
to clone the
address space
▪ The copies of the

memory segments are
(nearly) identical

▪ The new process has
copies of the parent’s
data, stack-allocated
variables, open file
descriptors, etc.

17

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

fork()PARENT CHILD

CSE333, Summer 2023L23: Concurrency and Processes

Zombies (Review)

❖ When a process terminates, its resources (e.g., its address
space) hang around as the process sits in a zombie state
▪ Process terminates by return from main or calling exit()

❖ A zombie process needs to be reaped

▪ Done automatically when its parent process terminates

▪ Can be done explicitly by its parent process by calling wait() or
waitpid(), which also returns the status code

▪ If the parent process terminates before the child becomes a
zombie, then init/systemd is responsible for reaping it

❖ See fork_example.cc

▪ ps -u displays the user’s currently running processes
18

CSE333, Summer 2023L23: Concurrency and Processes

Main Uses of fork

❖ Fork a child to handle some work

▪ e.g., server forks to handle a new connection

▪ e.g., web browser forks to render a new website
(for security purposes)

❖ Fork a child that then starts a new program via execv

▪ e.g., a shell forks and starts the program you want to run

▪ e.g., the 333 grading scripts fork and exec your
executable

❖ Fork a background (“daemon”) process that runs
independently

19

CSE333, Summer 2023L23: Concurrency and Processes

Concurrent Server with Processes

❖ The parent process blocks on accept(), waiting for a
new client to connect
▪ When a new connection arrives, the parent calls fork() to

create a child process

▪ The child process handles that new connection and exit()’s
when the connection terminates

❖ How do we avoid zombie processes from consuming all of
our memory?
▪ Option A: Parent calls wait() to “reap” children

▪ Option B: Use a double-fork trick

20

CSE333, Summer 2023L23: Concurrency and Processes

Double-fork Trick

21

server

CSE333, Summer 2023L23: Concurrency and Processes

Double-fork Trick

22

client

server accept()

CSE333, Summer 2023L23: Concurrency and Processes

Double-fork Trick

23

client

server

server
fork() child

CSE333, Summer 2023L23: Concurrency and Processes

Double-fork Trick

24

client server

server

server

fork() grandchild

CSE333, Summer 2023L23: Concurrency and Processes

Double-fork Trick

25

client server

server

child exit()’s / parent wait()’s

// Grandchild

child

When parent wait()’s

for child, the child will

be cleaned up

CSE333, Summer 2023L23: Concurrency and Processes

Double-fork Trick

26

client server

server
parent closes its
client connection

CSE333, Summer 2023L23: Concurrency and Processes

Double-fork Trick

27

client server

server

CSE333, Summer 2023L23: Concurrency and Processes

Double-fork Trick

28

client server

server

server

server

client

fork() grandchild
exit()

fork() child

CSE333, Summer 2023L23: Concurrency and Processes

Double-fork Trick

29

client server

client server

server

CSE333, Summer 2023L23: Concurrency and Processes

Double-fork Trick

30

client server

client server

client server

client server

client server

client server

client server

client server

client server

server

CSE333, Summer 2023L23: Concurrency and Processes

31

pollev.com/cse333

What will happen when one of the
grandchildren processes finishes?

A. Zombie until grandparent exits

B. Zombie until grandparent reaps

C. Zombie until init reaps

D. ZOMBIE FOREVER!!!

E. We’re lost…

CSE333, Summer 2023L23: Concurrency and Processes

Concurrent with Processes Pseudocode

❖ See searchserver_processes/

32

... // Server set up

while (1) {

 sock_fd = accept();

 pid = fork();

 if (pid == 0) {

 // ??? process

 } else {

 // ??? process

 }

}

CSE333, Summer 2023L23: Concurrency and Processes

Concurrent with Processes Pseudocode

❖ See searchserver_processes/

33

... // Server set up

while (1) {

 sock_fd = accept();

 pid = fork();

 if (pid == 0) {

 // Child process

 } else {

 // Parent process

 }

}

CSE333, Summer 2023L23: Concurrency and Processes

Concurrent with Processes Pseudocode

❖ See searchserver_processes/

34

... // Server set up

while (1) {

 sock_fd = accept();

 pid = fork();

 if (pid == 0) {

 // Child process

 pid = fork();

 if (pid == 0) {

 // ??? process

 }

 } else {

 // Parent process

 }

}

CSE333, Summer 2023L23: Concurrency and Processes

Concurrent with Processes Pseudocode

❖ See searchserver_processes/

35

... // Server set up

while (1) {

 sock_fd = accept();

 pid = fork();

 if (pid == 0) {

 // Child process

 pid = fork();

 if (pid == 0) {

 // Grand-child process

 HandleClient(sock_fd, ...);

 }

 } else {

 // Parent process

 }

}

CSE333, Summer 2023L23: Concurrency and Processes

Concurrent with Processes Pseudocode

❖ See searchserver_processes/

36

... // Server set up

while (1) {

 sock_fd = accept();

 pid = fork();

 if (pid == 0) {

 // Child process

 pid = fork();

 if (pid == 0) {

 // Grand-child process

 HandleClient(sock_fd, ...);

 }

 // Clean up resources...

 exit();

 } else {

 // Parent process

 }

}

CSE333, Summer 2023L23: Concurrency and Processes

Concurrent with Processes Pseudocode

❖ See searchserver_processes/

37

... // Server set up

while (1) {

 sock_fd = accept();

 pid = fork();

 if (pid == 0) {

 // Child process

 pid = fork();

 if (pid == 0) {

 // Grand-child process

 HandleClient(sock_fd, ...);

 }

 // Clean up resources...

 exit();

 } else {

 // Parent process

 // Wait for child to immediately die

 wait();

 close(sock_fd);

 }

}

CSE333, Summer 2023L23: Concurrency and Processes

How Fast is fork()?

❖ See fork_latency.cc

❖ ~0.26 milliseconds per fork*

▪ ∴ maximum of (1000/0.5) = 3,800 connections/sec/core
= ~332 million connections/day/core

• This is fine for most servers

• Too slow for super-high-traffic front-line web services

– Facebook served ~750 billion page views per day in 2013!
Would need 2-3k cores just to handle fork(), i.e. without doing any work
for each connection

❖ *Past measurements are not indicative of future performance – depends on hardware, OS,
software versions, …

❖ Tested on attu4 (3/5/2022)

38

CSE333, Summer 2023L23: Concurrency and Processes

How Fast is pthread_create()?

❖ See thread_latency.cc

❖ ~0.02 milliseconds per thread creation*
▪ ~13x faster than fork()

▪ ∴ maximum of (1000/0.02) = 50,000 connections/sec/core
= ~4.3 billion connections/day/core

▪ Mush faster, but writing safe multithreaded code can be serious
voodoo, as we’ve seen

❖ *Past measurements are not indicative of future performance – depends on hardware, OS,
software versions, …, but will typically be an order of magnitude faster than fork()

❖ Tested on attu4 (3/5/2022)

39

CSE333, Summer 2023L23: Concurrency and Processes

Outline (Revisited)

❖ We’ll look at different searchserver implementations

▪ Sequential

▪ Concurrent via forking threads – pthread_create()

▪ Concurrent via forking processes – fork()

▪

❖ Conclusions:

▪ Concurrent execution leads to better CPU, network utilization

▪ Writing concurrent software can be tricky and different
concurrency methods have benefits and drawbacks

❖ In real servers, we’d like to avoid the overhead needed to
create a new thread or process for every request… how?

40

CSE333, Summer 2023L23: Concurrency and Processes

Aside: Thread Pools

❖ Idea:

▪ Create a fixed set of worker threads when the server starts

▪ When a request arrives, add it to a queue of tasks (using locks)

▪ Each thread tries to remove a task from the queue (using locks)

▪ When a thread is finished with one task, it tries to get a new task
from the queue (using locks)

❖ A thread pool is written for you in Homework 4!

▪ Feel free to take a look, if curious

41

	Slide 1: About how long did Exercise 11 take you?
	Slide 2: Concurrency: Processes CSE 333 Summer 2023
	Slide 3: Relevant Course Information
	Slide 4: Outline
	Slide 5: Aside: Thinking about Threads
	Slide 6: Aside: Thinking about Threads
	Slide 7: Aside: Thinking about Threads
	Slide 8: Aside: Thinking about Threads
	Slide 9: Interleaving at the Instruction Level
	Slide 10: How to Get 4
	Slide 11: Outline
	Slide 12: Why Concurrent Processes?
	Slide 13: Process Isolation
	Slide 14: Creating New Processes (Review)
	Slide 15: Creating New Processes (Review)
	Slide 16: Creating New Processes (Review)
	Slide 17: fork() and Address Spaces
	Slide 18: Zombies (Review)
	Slide 19: Main Uses of fork
	Slide 20: Concurrent Server with Processes
	Slide 21: Double-fork Trick
	Slide 22: Double-fork Trick
	Slide 23: Double-fork Trick
	Slide 24: Double-fork Trick
	Slide 25: Double-fork Trick
	Slide 26: Double-fork Trick
	Slide 27: Double-fork Trick
	Slide 28: Double-fork Trick
	Slide 29: Double-fork Trick
	Slide 30: Double-fork Trick
	Slide 31: What will happen when one of the grandchildren processes finishes?
	Slide 32: Concurrent with Processes Pseudocode
	Slide 33: Concurrent with Processes Pseudocode
	Slide 34: Concurrent with Processes Pseudocode
	Slide 35: Concurrent with Processes Pseudocode
	Slide 36: Concurrent with Processes Pseudocode
	Slide 37: Concurrent with Processes Pseudocode
	Slide 38: How Fast is fork()?
	Slide 39: How Fast is pthread_create()?
	Slide 40: Outline (Revisited)
	Slide 41: Aside: Thread Pools

