W UNIVERSITY of WASHINGTON L22: Concurrency and Threads CSE333, Summer 2023

Concurrency: Threads
CSE 333 Summer 2023

Instructor: Timmy Yang

Teaching Assistants:
Jennifer Xu Leanna Nguyen Pedro Amarante
Sara Deutscher Tanmay Shah

W UNIVERSITY of WASHINGTON L22: Concurrency and Threads CSE333, Summer 2023

Relevant Course Information

» Exercise 12 released today, due Monday (8/14)

= Concurrency via pthreads

» Homework 4 due next Wednesday (8/16)
= Submissions accepted until Friday (8/18)

» Please fill out the course evaluations for lecture and your
section next week!
Q 1 >
+ Quiz 4 (Wednesday, 8/16 — Friday, 8/18) o(ﬂ”’ J@W
= Same policies as previous quizzes
= ex10-ex12, hw4, overall course questions!

W UNIVERSITY of WASHINGTON L22: Concurrency and Threads CSE333, Summer 2023

Some Common HW4 Bugs

+ Your server works, but is really, really slow
" Check the 2"¥ argument to the QueryProcessor constructor
Vi (fV(Ve(. Pg é“l#’
+ Funny things happen after the first request

= Make sure you’re not destroying the HTTPConnection object
too early (e.g., falling out of scope in a while loop)

+ Server crashes on a blank request

= Make sure that you handle the case that read () (or
WrappedRead ()) returns O

YA UNIVERSITY of WASHINGTON

L22: Concurrency and Threads

)
Threads e
2SS

" They execute concurrently like processes —

CSE333, Summer 2023

+» Threads are like lightweight processes

- Multiple threads can run simultaneously on multiple CPUs/cores
= Unlike processes, threads cohabitate the same address space

Threads within a process see the same heap and globals and can
communicate with each other through variables and memory

— But they can interfere with each other

— Need synchronization for shared resources

eSS
- Each thread has its own stack —+ 4"L rt'y

+ Analogy: restaurant kitchen
= Kitchen is process

" Chefs are threads

W UNIVERSITY of WASHINGTON L22: Concurrency and Threads CSE333, Summer 2023

Single-Threaded Address Spaces

_ + Before creating a thread

Stack

SP e = f’are"t " One thread of execution running
in the address space
- One PC, stack, SP
1 " That main thread invokes a
Shared Libraries function to create a new thread
T % Typically pthread create ()

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read-Only Segments
5 —n .text, .rodata

pakent

YW UNIVERSITY of WASHINGTON

L22: Concurrency and Threads

Multi-threaded Address Spaces

_ + After creating a thread

StaCkparent -
parent — 1)
Stack 4 4
Py = I
/-‘:\‘\

Cshared Libraries—’

/:‘
(Heap (mam,

Pty =

pakent

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

" Two threads of execution running
in the address space

- Original thread {parent) and new
thread (child)

- New stack created for child thread

« Child thread has its own values of
the PC and SP

= Both threads share the other
segments (code, heap, globals)

- They can cooperatively modify
shared data

CSE333, Summer 2023

W UNIVERSITY of WASHINGTON L22: Concurrency and Threads CSE333, Summer 2023

POSIX Threads (pthreads)

+» The POSIX APIs for dealing with threads

" Declaredinpthread.h
- Not part of the C/C++ language (cf., Java)

" To enable support for multithreading, must inclu@

flag when compiling and linking with gcc comman

- gcc —g —Wall —-std=cl7 —-pthread -0 main mailn.c

W UNIVERSITY of WASHINGTON L22: Concurrency and Threads CSE333, Summer 2023

Creating and Terminating Threads
/_,,OUJ(\,U.\ paraw

% [int pthread create ((\ .
pthread t* thread, /”‘Q"“{:ﬁ\«
const pthread attr t* attr, J | poinker 2y
void* (*start routine) (void*), Woid® vekarn

| vold* arg); ¢ Whl.‘yﬁl fo- C

) J))
" Creates a new thread into *thread, with attributes *attr

(NULL means default attributes) Lo “theepdd descripbor”
ov NWIPTC
= Returns 0 on success and an error number on error (can check

. | |
against error constants) > e Fork ! e
" The new thread runs start routine (arg) (y/“
A L 4
. pthated_crevte

L)

D)

» | vo1d pthread exit (void* retval);

" Equivalentof exit (retval) ; for athread instead of a process

" The thread will automatically exit once it returns from
start routine ()

W UNIVERSITY of WASHINGTON L22: Concurrency and Threads CSE333, Summer 2023

What To Do After Forking Threads?
(1\ee r\oiv\ w B ke 3 L/
& [int ﬁthread;join(pthread_t thread, void** retval);]

= Waits for the thread specified by thread to terminate

= The thread equivalent of waitpid ()
" The exit status of the terminated thread is placed in **retval

‘y./’_—b.

0/"’—%? a 4& —>
(Ve)00

& [int pthread detach(pthread t thread);]

= Mark thread specified by thread as detached — it will clean up

its resources as soon as it terminates mﬂg’?
s — P ° e

'W
’__D/i»,__@fﬁi——a

ol MOy

W UNIVERSITY of WASHINGTON L22: Concurrency and Threads CSE333, Summer 2023

Concurrent Server with Threads

+ A single process handles all of the connections, but a
parent thread dispatches (creates) a new thread to handle
each connection

= The child thread handles the new connection and then exits when
the connection terminates

>

D)

» See searchserver threads/

10

W UNIVERSITY of WASHINGTON L22: Concurrency and Threads CSE333, Summer 2023

Multithreaded Server

server

11

W UNIVERSITY of WASHINGTON L22: Concurrency and Threads CSE333, Summer 2023

Multithreaded Server

) pthread create ()
7’

m pthread detach(()

server

12

W UNIVERSITY of WASHINGTON L22: Concurrency and Threads CSE333, Summer 2023

Multithreaded Server

server

13

W UNIVERSITY of WASHINGTON L22: Concurrency and Threads CSE333, Summer 2023

Multithreaded Server

N
/\ pthread create()

server

14

W UNIVERSITY of WASHINGTON L22: Concurrency and Threads CSE333, Summer 2023

Multithreaded Server

shared

data
structures

server

15

W UNIVERSITY of WASHINGTON L22: Concurrency and Threads CSE333, Summer 2023

Thread Examples

+« See cthreads.c

" How do you properly handle memory management?
- Who allocates and deallocates memory?
- How long do you want memory to stick around?

+» Seepthreads.cc

"= More instructions per thread = higher likelihood of interleaving

+ See searchserver threads/searchserver.cc

" When callingpthread create (), start routine points
to a function that takes only one argument (a void¥*)

- To pass complex arguments into the thread, create a struct to bundle
the necessary data

16

W UNIVERSITY of WASHINGTON L22: Concurrency and Threads CSE333, Summer 2023

Why Concurrent Threads? (Review)

+» Advantages:

= Almost as simple to code as sequential

- In fact, most of the code is identical! (but a bit more complicated to
dispatch a thread)

= Concurrent execution with good CPU and network utilization
- Some overhead, but less than processes

= Shared-memory communication is possible
i . H) or
+ Disadvantages: e
resin From
4& Synchronization is complicated wainl), al

= Shared fate within a process
4 One “rogue” thread can hurt you badly

17

W UNIVERSITY of WASHINGTON L22: Concurrency and Threads CSE333, Summer 2023

Data Races

+» Two memory accesses form a data race if different
threads access the same location, and at least one is a
write, and they occur one after another

" Means that the result of a program can vary depending on chance
(which thread ran first?)

18

YW UNIVERSITY of WASHINGTON

L22: Concurrency and Threads

CSE333, Summer 2023

Data Race Example

» If your fridge has no milk, 1t (Imilk) |
then go out and buy some more |
" What could go wrong? buy milk
\ } J
» If you live alone:

..A
=

+ If you live with a roommate:

El]

e e/ !

] (]
N o 2 PR

19

W UNIVERSITY of WASHINGTON L22: Concurrency and Threads CSE333, Summer 2023

@ PO" EveryWhel‘e pollev.com/cse333

Does leaving a note on the fridge (- (1note) {

fix our milk data race problem? if ('milk) {
leave note
buy milk
A. remove note
}
B. No, could end up with no milk))
C. No, could still buy multiple milk Yoo frooe
- heck note e
’ n
D. We're lost... e e
d\a(é M“b
\Mﬁ(*&
bd” W\\'lln-
\eae ML
WS will JV

Time 20

W UNIVERSITY of WASHINGTON L22: Concurrency and Threads CSE333, Summer 2023
W/

Threads and Data Races (_ « \E_L/

» Data races might interfere in painful, non-obvious ways,
depending on the specifics of the data structure

» Example: two threads try to read from and write to the

same shared memory location
@0, w0, K\, I

" Could get “correct” answer gl s s
" Could accidentally read old or intermediate (i.e., invalid) value

= One thread’s work could get “lost” 0, (\7_;\ | wD/ ~
>

» Example: two threads try to push an item onto the head
of the linked list at the same time
"= Could get “correct” answer
" Could get different ordering of items
" Could break the data structure! 2 y

W UNIVERSITY of WASHINGTON L22: Concurrency and Threads CSE333, Summer 2023

Synchronization

+ Synchronization is the act of preventing two (or more)
concurrently running threads from interfering with each
other when operating on shared data
= Need some mechanism to coordinate the threads

- “Let me go first, then you can go”

= Many different coordination mechanisms have been invented
(see CSE 451)

+ Goals of synchronization:

= Liveness — ability to execute in a timely manner
(informally, “something good happens”)

= Safety —avoid unintended interactions with shared data
structures (informally, “nothing bad happens”)

22

YW UNIVERSITY of WASHINGTON

L22: Concurrency and Threads

Lock Synchronization

+ Use a “Lock” to grant access to a critical section so that
only one thread can operate there at a time

= Executed in an uninterruptible (i.e., atomic) manner

.0

+» Pseudocode:

Lock Acquire

= Wait until the lock is free,
then take it

Lock Release

= Release the lock

// non-critical code

CSE333, Summer 2023

loop/idle
lock.acquire () ;_/ iflocked

// critical section
lock.release () ;

// non-critical code

= |f other threads are waiting, wake exactly one up to pass lock to

YW UNIVERSITY of WASHINGTON L22: Concurrency and Threads

CSE333, Summer 2023

Milk Example — What is the Critical Section?

+» What if we use a lock on the
refrigerator?

" Probably overkill = what if
roommate wanted to get eggs”?

% For performance reasons, only
put what is necessary in the
critical section
"= Only lock the milk

= But lock all steps that must run
uninterrupted (i.e., must run
as an atomic unit)

rfridge.lock()

1f ('milk) {
buy milk

}

fridge.unlock ()

!

milk lock.lock ()

1t (Imilk) {
buy milk

}

milk lock.unlock ()

U et “lok " Ll | shep/ instr

24

W UNIVERSITY of WASHINGTON L22: Concurrency and Threads CSE333, Summer 2023

pthreads and Locks
iy

+~ Another term for a lock is a mutex (‘mutual exclu5|on”)
" pthread.h defines datatype pthread mutex t

4 | int pthread mutex init(pthread mutex t* mutex,
const pthread mutexattr t* attr);

" |nitializes a mutex with specified attributes

* (int pthread mutex lock (pthread mutex t* mutex); J

= Acquire the lock — blocks if already locked

* (int pthread mutex unlock (pthread mutex t* mutex); J

= Releases the lock

¥ (int pthread mutex destroy (pthread mutex t* mutex) ;J

= “Uninitializes” a mutex — clean up when done

25

YW UNIVERSITY of WASHINGTON L22: Concurrency and Threads

CSE333, Summer 2023

pthread Mutex Examples

+ See total.cc

= Data race between threads

+ See total locking.cc

= Adding a mutex fixes our data race

+» How does this compare to sequential code?

= Likely slower — only 1 thread can increment at a time, but have to
deal with checking the lock and switching between threads

" One possible fix: each thread increments a local variable and then
adds its value (once!) to the shared variable at the end

26

W UNIVERSITY of WASHINGTON L22: Concurrency and Threads CSE333, Summer 2023

Your Turn! (pthread mutex)

+ Rewrite thread main from total locking.cc:

It needs to be passed an int* with the address of sum total
and an int with the number of times to loop (in that order)

Increment a local sum variable NUM times, then add it to
sum total

Handle synchronization properly!

27

W UNIVERSITY of WASHINGTON L22: Concurrency and Threads CSE333, Summer 2023

C++11 Threads

+» C++11 added threads and concurrency to its libraries
" <thread> —thread objects
" <mutex>—locks to handle critical sections

" <condition variable> —used to block objects until
notified to resume

" <atomic> —indivisible, atomic operations
= <future> —asynchronous access to data

" These might be built on top of <pthread.h>, but also might
not be

+ Definitely use in C++11 code if local conventions allow,
but pthreads will be around for a long, long time

= Use pthreads in ex12, the boilerplate code uses C++ threads

28

	Slide 1: Concurrency: Threads CSE 333 Summer 2023
	Slide 2: Relevant Course Information
	Slide 3: Some Common HW4 Bugs
	Slide 4: Threads
	Slide 5: Single-Threaded Address Spaces
	Slide 6: Multi-threaded Address Spaces
	Slide 7: POSIX Threads (pthreads)
	Slide 8: Creating and Terminating Threads
	Slide 9: What To Do After Forking Threads?
	Slide 10: Concurrent Server with Threads
	Slide 11: Multithreaded Server
	Slide 12: Multithreaded Server
	Slide 13: Multithreaded Server
	Slide 14: Multithreaded Server
	Slide 15: Multithreaded Server
	Slide 16: Thread Examples
	Slide 17: Why Concurrent Threads? (Review)
	Slide 18: Data Races
	Slide 19: Data Race Example
	Slide 20: Does leaving a note on the fridge fix our milk data race problem?
	Slide 21: Threads and Data Races
	Slide 22: Synchronization
	Slide 23: Lock Synchronization
	Slide 24: Milk Example – What is the Critical Section?
	Slide 25: pthreads and Locks
	Slide 26: pthread Mutex Examples
	Slide 27: Your Turn! (pthread mutex)
	Slide 28: C++11 Threads

