
CSE333, Summer 2023L21:  Intro to Concurrency

1

pollev.com/cse333

About how long did Exercise 10 take you?

A.  [0, 2) hours
B.  [2, 4) hours
C.  [4, 6) hours
D.  [6, 8) hours
E.  8+ Hours
F.  I didn’t submit / I prefer not to say



CSE333, Summer 2023L21:  Intro to Concurrency

Introduction to Concurrency
CSE 333 Summer 2023

Instructor:  Timmy Yang

Teaching Assistants:

Jennifer Xu Leanna Nguyen Pedro Amarante

Sara Deutscher Tanmay Shah



CSE333, Summer 2023L21:  Intro to Concurrency

Relevant Course Information (1/2)

❖ Homework 4 due 1 week from Wednesday (8/16)

▪ Partner form due Thursday (8/10)

▪ You can still use two late days (until Friday, 8/18)

❖ Exercise 11 due Thursday (8/10) @ 1pm

❖ Exercise 12 (the last exercise™) to be released Wednesday

▪ Consumer-producer concurrency

▪ Due Monday 8/14 @ 1 pm

❖ Quiz 4 (Wednesday, 8/16 – Friday, 8/18)

▪ Same policies as previous quizzes

▪ ex10-ex12, hw4, overall course questions

3



CSE333, Summer 2023L21:  Intro to Concurrency

Relevant Course Information (2/2)

❖ Homework 3 uploaded this morning

▪ Please check Gradescope/email to make sure your submission 
shows up as you expect

❖ Quiz 2 Grades released

▪ See Common Issues post

▪ Regrades close Tuesday (8/8) @ 11:59pm

4



CSE333, Summer 2023L21:  Intro to Concurrency

Lecture Outline

❖ From Query Processing to a Search Server

❖ Concurrency and Concurrency Methods

5



CSE333, Summer 2023L21:  Intro to Concurrency

Building a Web Search Engine

❖ We have:

▪ Some indexes

• A map from <word> to <list of documents containing the word>

• This is probably sharded over multiple files

▪ A query processor

• Accepts a query composed of multiple words

• Looks up each word in the index

• Merges the result from each word into an overall result set

6



CSE333, Summer 2023L21:  Intro to Concurrency

Search Engine Architecture

7

query 
processor

client
index 

file

index 
file

index 
file



CSE333, Summer 2023L21:  Intro to Concurrency

Sequential Search Engine (Pseudocode)

8

doclist Lookup(string word) {

  bucket = hash(word);

  hitlist = file.read(bucket);

  foreach hit in hitlist {

    doclist.append(file.read(hit));

  }

  return doclist;

}

main() {

  SetupServerToReceiveConnections();

  while (1) {

    string query_words[] = GetNextQuery();

    results = Lookup(query_words[0]);

    foreach word in query[1..n] {

      results = results.intersect(Lookup(word));

    }

    Display(results);

  }

}

See searchserver_sequential/



CSE333, Summer 2023L21:  Intro to Concurrency

Why Sequential?

❖ Advantages:

▪ Super(?) simple to build/write

❖ Disadvantages:

▪ Incredibly poor performance

• One slow client will cause all others to block

• Poor utilization of resources (CPU, network, disk)

9



CSE333, Summer 2023L21:  Intro to Concurrency

Execution Timeline: a Multi-Word Query

10

n
e
t
w
o
r
k
 
I
/
O

m
a
i
n
(
)

 
 
 
G
e
t
N
e
x
t
Q
u
e
r
y
(
)

d
i
s
k
 
I
/
O

L
o
o
k
u
p
(
)

d
i
s
k
 
I
/
O

L
o
o
k
u
p
(
)

d
i
s
k
 
I
/
O

L
o
o
k
u
p
(
)

n
e
t
w
o
r
k
 
I
/
O

D
i
s
p
l
a
y
(
)

G
e
t
N
e
x
t
Q
u
e
r
y
(
)

• • •

time

query

C
P
U

C
P
U

r
e
s
u
l
t
s
.
i
n
t
e
r
s
e
c
t
(
)

r
e
s
u
l
t
s
.
i
n
t
e
r
s
e
c
t
(
)



CSE333, Summer 2023L21:  Intro to Concurrency

What About I/O-caused Latency?

❖ Jeff Dean’s “Numbers Everyone Should Know” (LADIS ‘09)

11



CSE333, Summer 2023L21:  Intro to Concurrency

Execution Timeline: (Loosely) To Scale

12

n
e
t
w
o
r
k
 
I
/
O

m
a
i
n
(
)

d
i
s
k
 
I
/
O

d
i
s
k
 
I
/
O

d
i
s
k
 
I
/
O

• • •

time

query

n
e
t
w
o
r
k
 
I
/
O

C
P
U

C
P
U



CSE333, Summer 2023L21:  Intro to Concurrency

Multiple (Single-Word) Queries

13

C
P
U
 
1
.
a

I
/
O
 
1
.
b

C
P
U
 
1
.
c

I
/
O
 
1
.
d

C
P
U
 
1
.
e

C
P
U
 
2
.
a

I
/
O
 
2
.
b

C
P
U
 
2
.
c

I
/
O
 
2
.
d

C
P
U
 
2
.
e

C
P
U
 
3
.
a

I
/
O
 
3
.
b

C
P
U
 
3
.
c

I
/
O
 
3
.
d

C
P
U
 
3
.
e

time

query 2

query 3

query 1

# is the Query Number
#.a -> GetNextQuery()
#.b -> network I/O
#.c  -> Lookup() & file.read()
#.d -> Disk I/O
#.e -> Intersect()
              & Display()



CSE333, Summer 2023L21:  Intro to Concurrency

Multiple Queries: (Loosely) To Scale

14

I
/
O
 
1
.
b

I
/
O
 
1
.
d

time

query 2

query 1

I
/
O
 
1
.
b

I
/
O
 
1
.
d

I
/
O
 
1
.
b

I
/
O
 
1
.
d

query 3



CSE333, Summer 2023L21:  Intro to Concurrency

Sequential Issues

15

C
P
U
 
1
.
a

I
/
O
 
1
.
b

C
P
U
 
1
.
c

I
/
O
 
1
.
d

C
P
U
 
1
.
e

C
P
U
 
2
.
a

I
/
O
 
2
.
b

C
P
U
 
2
.
c

I
/
O
 
2
.
d

C
P
U
 
2
.
e

C
P
U
 
3
.
a

I
/
O
 
3
.
b

C
P
U
 
3
.
c

I
/
O
 
3
.
d

C
P
U
 
3
.
e

time

query 2

query 3

query 1

The CPU is idle most 
of the time!

(picture not to scale)

Only one I/O request at 
a time is “in flight”

Queries don’t run until 
earlier queries finish



CSE333, Summer 2023L21:  Intro to Concurrency

Sequential Can Be Inefficient

❖ Only one query is being processed at a time

▪ All other queries queue up behind the first one

▪ And clients queue up behind the queries …

❖ Even while processing one query, the CPU is idle the vast 
majority of the time

▪ It is blocked waiting for I/O to complete

• Disk I/O can be very, very slow (10 million times slower …)

❖ At most one I/O operation is in flight at a time

▪ Missed opportunities to speed I/O up

• Separate devices in parallel, better scheduling of a single device, etc.

16



CSE333, Summer 2023L21:  Intro to Concurrency

Lecture Outline

❖ From Query Processing to a Search Server

❖ Concurrency and Concurrency Methods

17



CSE333, Summer 2023L21:  Intro to Concurrency

Concurrency

❖ Concurrency != parallelism

▪ Concurrency is working on multiple tasks with overlapping 
execution times

▪ Parallelism is executing multiple CPU instructions simultaneously

❖ Our search engine could run concurrently in multiple 
different ways:

▪ Example: Issue I/O requests against different files/disks 
simultaneously

• Could read from several index files at once, processing the I/O results 
as they arrive

▪ Example: Execute multiple queries at the same time

• While one is waiting for I/O, another can be executing on the CPU

18



CSE333, Summer 2023L21:  Intro to Concurrency

A Concurrent Implementation 

❖ Use multiple “workers”

▪ As a query arrives, create a new worker to handle it

• The worker reads the query from the network, issues read requests 
against files, assembles results and writes to the network

• The worker alternates between consuming CPU cycles and blocking 
on I/O

▪ The OS context switches between workers

• While one is blocked on I/O, another can use the CPU

• Multiple workers’ I/O requests can be issued at once

❖ So what should we use for our “workers”?

19



CSE333, Summer 2023L21:  Intro to Concurrency

Worker Option 1: Processes (Review)

❖ Processes can fork “cloned” processes that have a 
parent-child relationship

▪ Work almost entirely independent of each other

❖ The major components of a process are:

▪ An address space to hold data and instructions

▪ Open resources such as file descriptors

▪ Current state of execution

• Includes values of registers (including program counter and stack 
pointer) and parts of memory (the Stack, in particular)

20



CSE333, Summer 2023L21:  Intro to Concurrency

Why Processes?

❖ Advantages:

▪ Processes are isolated from one another

• No shared memory between processes

• If one crashes, the other processes keep going

▪ No need for language support (OS provides fork)

❖ Disadvantages:

▪ A lot of overhead during creation and context switching

▪ Cannot easily share memory between processes – typically must 
communicate through the file system

21



CSE333, Summer 2023L21:  Intro to Concurrency

Worker Option 2: Threads

❖ From within a process, we can separate out the concept 
of a “thread of execution” (thread for short)

▪ Processes are the containers that hold shared resources and 
attributes

• e.g., address space, file descriptors, security attributes

▪ Threads are independent, sequential execution streams (units of 
scheduling) within a process

• e.g., stack, stack pointer, program counter, registers

22

thread



CSE333, Summer 2023L21:  Intro to Concurrency

Threads vs. Processes

23

OS kernel [protected]

Stackchild

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork()

SPparent

PCparent

SPchild

PCchild



CSE333, Summer 2023L21:  Intro to Concurrency

Threads vs. Processes

24

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

pthread_create()

Stackchild

SPparent

PCparent

SPchild

PCchild

SPparent

PCparent



CSE333, Summer 2023L21:  Intro to Concurrency

Multi-threaded Search Engine (Pseudocode)

25

doclist Lookup(string word) {

  bucket = hash(word);

  hitlist = file.read(bucket);

  foreach hit in hitlist

    doclist.append(file.read(hit));

  return doclist;

}

ProcessQuery(string query_words[]) {

  results = Lookup(query_words[0]);

  foreach word in query[1..n]

    results = results.intersect(Lookup(word));

  Display(results);

}

main() {

  while (1) {

    string query_words[] = GetNextQuery();

    CreateThread(ProcessQuery(query_words));

  }

}

All we did was put the 

code into a function,

and create a thread 

that invokes it!



CSE333, Summer 2023L21:  Intro to Concurrency

Multi-threaded Search Engine (Execution)

26

C
P
U
 
1
.
a

I
/
O
 
1
.
b

C
P
U
 
1
.
c

I
/
O
 
1
.
d

C
P
U
 
1
.
e

C
P
U
 
2
.
a

I
/
O
 
2
.
b

C
P
U
 
3
.
a

I
/
O
 
3
.
b

C
P
U
 
3
.
c

I
/
O
 
3
.
d

C
P
U
 
3
.
e

time

query 2

query 3

query 1

C
P
U
 
2
.
c

I
/
O
 
2
.
d

C
P
U
 
2
.
e

Note how only one 

thread uses any 

specific resource at a 

time.

The OS schedules all 

of this for us! ☺



CSE333, Summer 2023L21:  Intro to Concurrency

Why Threads?

❖ Advantages:

▪ You (mostly) write sequential-looking code

▪ Less overhead than processes during creation and context 
switching

▪ Threads can run in parallel if you have multiple CPUs/cores

❖ Disadvantages:

▪ If threads share data, you need locks or other synchronization

• Very bug-prone and difficult to debug

▪ Threads can introduce overhead

• Lock contention, context switch overhead, and other issues

▪ Need language support for threads

27



CSE333, Summer 2023L21:  Intro to Concurrency

Alternate: Non-blocking I/O

❖ Reading from the network can truly block your program

▪ Remote computer may wait arbitrarily long before sending data

❖ Non-blocking I/O (network, console)

▪ Your program enables non-blocking I/O on its file descriptors

▪ Your program issues read() and write() system calls

• If the read/write would block, the system call returns immediately

▪ Program can ask the OS which file descriptors are 
readable/writeable

• Program can choose to block while no file descriptors are ready

28



CSE333, Summer 2023L21:  Intro to Concurrency

Alternate: Asynchronous I/O

❖ Using asynchronous I/O, your program (almost never) 
blocks on I/O

❖ Your program begins processing a query

▪ When your program needs to read data to make further progress, 
it registers interest in the data with the OS and then switches to a 
different query

▪ The OS handles the details of issuing the read on the disk, or 
waiting for data from the console (or other devices, like the 
network)

▪ When data becomes available, the OS lets your program know by 
delivering an event

29



CSE333, Summer 2023L21:  Intro to Concurrency

Event-Driven Programming

❖ Your program is structured as an event-loop

30

void dispatch(task, event) {

  switch (task.state) {

    case READING_FROM_CONSOLE:

      query_words = event.data;

      async_read(index, query_words[0]);

      task.state = READING_FROM_INDEX;

      return;

    case READING_FROM_INDEX:

      ...

  }

}

while (1) {

  event = OS.GetNextEvent();

  task = lookup(event);

  dispatch(task, event);

}



CSE333, Summer 2023L21:  Intro to Concurrency

Asynchronous, Event-Driven

31

I
/
O
 
1
.
b

I
/
O
 
2
.
b

I
/
O
 
3
.
b

time

I
/
O
 
2
.
d

C
P
U
 
3
.
a

C
P
U
 
1
.
a

C
P
U
 
2
.
a

I
/
O
 
1
.
d

C
P
U
 
1
.
c

C
P
U
 
2
.
c

I
/
O
 
3
.
d

C
P
U
 
1
.
e

C
P
U
 
2
.
e

C
P
U
 
3
.
c

C
P
U
 
3
.
e

# is the Query Number
#.a -> GetNextQuery()
#.b -> network I/O
#.c  -> Lookup() & file.read()
#.d -> Disk I/O
#.e -> Intersect()
              & Display()



CSE333, Summer 2023L21:  Intro to Concurrency

Why Events?

❖ Advantages:

▪ Don’t have to worry about locks and race conditions

▪ For some kinds of programs, especially GUIs, leads to a very 
simple and intuitive program structure

• One event handler for each UI event

❖ Disadvantages:

▪ Can lead to very complex structure for programs that do lots of 
disk and network I/O

• Sequential code gets broken up into a jumble of small event handlers

• You have to package up all task state between handlers

32



CSE333, Summer 2023L21:  Intro to Concurrency

Outline (next two lectures)

❖ We’ll look at different searchserver implementations

▪ Concurrent via dispatching threads – pthread_create()

▪ Concurrent via forking processes – fork()

❖ Reference:  Computer Systems: A Programmer’s 
Perspective, Chapter 12 (CSE 351 book)

33


	Slide 1:  About how long did Exercise 10 take you?
	Slide 2: Introduction to Concurrency CSE 333 Summer 2023
	Slide 3: Relevant Course Information (1/2)
	Slide 4: Relevant Course Information (2/2)
	Slide 5: Lecture Outline
	Slide 6: Building a Web Search Engine
	Slide 7: Search Engine Architecture
	Slide 8: Sequential Search Engine (Pseudocode)
	Slide 9: Why Sequential?
	Slide 10: Execution Timeline: a Multi-Word Query
	Slide 11: What About I/O-caused Latency?
	Slide 12: Execution Timeline: (Loosely) To Scale
	Slide 13: Multiple (Single-Word) Queries
	Slide 14: Multiple Queries: (Loosely) To Scale
	Slide 15: Sequential Issues
	Slide 16: Sequential Can Be Inefficient
	Slide 17: Lecture Outline
	Slide 18: Concurrency
	Slide 19: A Concurrent Implementation 
	Slide 20: Worker Option 1: Processes (Review)
	Slide 21: Why Processes?
	Slide 22: Worker Option 2: Threads
	Slide 23: Threads vs. Processes
	Slide 24: Threads vs. Processes
	Slide 25: Multi-threaded Search Engine (Pseudocode)
	Slide 26: Multi-threaded Search Engine (Execution)
	Slide 27: Why Threads?
	Slide 28: Alternate: Non-blocking I/O
	Slide 29: Alternate: Asynchronous I/O
	Slide 30: Event-Driven Programming
	Slide 31: Asynchronous, Event-Driven
	Slide 32: Why Events?
	Slide 33: Outline (next two lectures)

