W UNIVERSITY of WASHINGTON L21: Intro to Concurrency CSE333, Summer 2023

@ PO" Evel‘yWhel‘e pollev.com/cse333

About how long did Exercise 10 take you?

"Moo wR

[2, 4) hours

[4, 6) hours

[6, 8) hours

8+ Hours

| didn’t submit / | prefer not to say

W UNIVERSITY of WASHINGTON L21: Intro to Concurrency CSE333, Summer 2023

Introduction to Concurrency
CSE 333 Summer 2023 b L

Instructor: Timmy Yang

Teaching Assistants:
Jennifer Xu Leanna Nguyen Pedro Amarante

Sara Deutscher Tanmay Shah

W UNIVERSITY of WASHINGTON L21: Intro to Concurrency CSE333, Summer 2023

Relevant Course Information (1/2)

» Homework 4 due 1 week from Wednesday (8/16)
= Partner form due Thursday (8/10)
" You can still use two late days (until Friday, 8/18)

» Exercise 11 due Thursday (8/10) @ 1pm

» Exercise 12 (the last exercise™) to be released Wednesday
= Consumer-producer concurrency
= Due Monday 8/14 @ 1 pm

% Quiz 4 (Wednesday, 8/16 — Friday, 8/18)
= Same policies as previous quizzes

= ex10-ex12, hw4, overall course questions

W UNIVERSITY of WASHINGTON L21: Intro to Concurrency CSE333, Summer 2023

Relevant Course Information (2/2)

» Homework 3 uploaded this morning

= Please check Gradescope/email to make sure your submission
shows up as you expect

» Quiz 2 Grades released

" See Common Issues post
= Regrades close Tuesday (8/8) @ 11:59pm

W UNIVERSITY of WASHINGTON L21: Intro to Concurrency CSE333, Summer 2023

Lecture Outline

+» From Query Processing to a Search Server
+ Concurrency and Concurrency Methods

W UNIVERSITY of WASHINGTON L21: Intro to Concurrency CSE333, Summer 2023

Building a Web Search Engine

+ We have:

= Some indexes
- A map from <word> to <list of documents containing the word>
- This is probably sharded over multiple files
" A query processor
- Accepts a query composed of multiple words
- Looks up each word in the index
- Merges the result from each word into an overall result set

W UNIVERSITY of WASHINGTON L21: Intro to Concurrency CSE333, Summer 2023

Search Engine Architecture

HwW &

index
file \
index . query
file processor
index /
file

YW UNIVERSITY of WASHINGTON

L21: Intro to Concurrency

CSE333, Summer 2023

Sequential Search Engine (Pseudocode)

(doclist Lookup (string word) {
bucket = hash (word);

hitlist = file.read (bucket); f)yk; 9/0
foreach hit in hitlist { C///‘ N

doclist.append(file.read (hit)):;
}

return doclist;

}

main () {

SetupServerToReceiveConnections();/Vfﬂaps /‘5 ﬂ/
while (1) {

T
string query words[] =

= GetNextQuery () ; Nep ool
results = Lookup (query words[0]);

foreach word in query[l..n] {

results = results.intersect (Lookup (word)) ;
Display (results); [QG%UNf
}

\.

eV s

kf\/e

See searchserver sequential/

W UNIVERSITY of WASHINGTON L21: Intro to Concurrency CSE333, Summer 2023

Why Sequential?

+» Advantages:
= Super(?) simple to build/write

+ Disadvantages:

" |ncredibly poor performance
- One slow client will cause all others to block
- Poor utilization of resources (CPU, network, disk)

() KxondaxoNI oD 3

™
I
o
N
—
9]
S
S
>
N
)
)
™
Ll
n
O

W. O/ ¥aIomjiau
% () Aetdsta
o nao
|m () 309SI9qUT S3TNSSI
@ N
i)
W W O/1 ¥STIPp
L S
=) () dnyoort
1 S
M nNdo
2 © () 30®sx@3uUT "S3TNnsax
5 Y
c (Wv O/I ¥STP
— =
() () dnyoor
[0/ ST
= nnu () dnsjooT
-
m w O/I Iomjau
5 9
= x s == () Kxzondaxo
= 5 IXSN399
- S () urew

10

query

w UNIVERSITY of WASHINGTON L21: Intro to Concurrency CSE333, Summer 2023

What About I/O-caused Latency?

+ Jeff Dean’s “Numbers Everyone Should Know” (LADIS ‘09)

Numbers Everyone Should Know
L1l cache reference OIS In'S
Branch mispredict Sllints
L2 cache reference 7 ns
Mutex lock/unlock LI gl
Main memory reference 100 ns
Compress 1K bytes with Zippy 10,000 ns
Send 2K bytes over 1 Gbps network 20,000 ns
Read 1 MB sequentially from memory i VR (010 o=
Round trip within same datacenter S ORORINnts
Disk seek 1L0) - (000 - @00 @E
= Read 1 MB sequentially from network 10,000,000 ns
Read 1 MB sequentially from disk %EZEEEI@OO ns
Send packet CA->Netherlands->CA ILS(0) 4 @005 OX0) S +
Google -

11

W UNIVERSITY of WASHINGTON L21: Intro to Concurrency CSE333, Summer 2023

Execution Timeline: (Loosely) To Scale

@) @)
>~ ~
@) O @)
= < NG NG b
v H H H A/
g I, I, IV 5
2 0 0 0 2
5 — - — 5
5 T o T o
- <

main ()

12

W UNIVERSITY of WASHINGTON L21: Intro to Concurrency CSE333, Summer 2023

Multiple (Single-Word) Queries

is the Query Number
#.a-> GetNextQuery ()

#.b -> network 1/0

#.c ->Lookup () & file.read()
#.d -> Disk I/O
H.e->Intersect ()
& Display ()

query 1

13

W UNIVERSITY of WASHINGTON L21: Intro to Concurrency CSE333, Summer 2023

Multiple Queries: (Loosely) To Scale

query 1

14

W UNIVERSITY of WASHINGTON L21: Intro to Concurrency CSE333, Summer 2023

Sequential Issues

Only one I/0O request at
The CPU is idle most a time is “in flight”

of the time! /

(picture not to scale)

Queries don’t run until

T earlier queries finish
query

15

CSE333, Summer 2023

YW UNIVERSITY of WASHINGTON L21: Intro to Concurrency

Sequential Can Be Inefficient

+» Only one query is being processed at a time
= All other queries queue up behind the first one
= And clients queue up behind the queries ...

>

+ Even while processing one query, the CPU is idle the vast
majority of the time

= |t is blocked waiting for |/O to complete
- Disk I/O can be very, very slow (10 million times slower ...)

L)

+ At most one I/O operation is in flight at a time

= Missed opportunities to speed |/O up
- Separate devices in parallel, better scheduling of a single device, etc.

16

W UNIVERSITY of WASHINGTON L21: Intro to Concurrency CSE333, Summer 2023

Lecture Outline

+» From Query Processing to a Search Server
+» Concurrency and Concurrency Methods

17

W UNIVERSITY of WASHINGTON L21: Intro to Concurrency CSE333, Summer 2023

Concurrency

+» Concurrency != parallelis

= Concurrency is working on multiple tasks with overlapping
execution times

= Parallelism is executing multiple CPU instructions simultaneously

+ Our search engine could run concurrently in multiple
different ways:

= Example: Issue I/O requests against different files/disks
simultaneously

- Could read from several index files at once, processing the 1/0 results
as they arrive

= Example: Execute multiple queries at the same time

- While one is waiting for /O, another can be executing on the CPU

18

W UNIVERSITY of WASHINGTON L21: Intro to Concurrency CSE333, Summer 2023

A Concurrent Implementation

+» Use multiple “workers”

= As a query arrives, create a new worker to handle it

- The worker reads the query from the network, issues read requests
against files, assembles results and writes to the network

- The worker alternates between consuming CPU cycles and blocking
onl/O

" The OS context switches between workers
« While one is blocked on I/O, another can use the CPU

-

- Multiple workers’ 1/0O requests can be issued at once

+ So what should we use for our “workers”?

19

W UNIVERSITY of WASHINGTON L21: Intro to Concurrency CSE333, Summer 2023

Worker Option 1: Processes (Review)

+ Processes can fork “cloned” processes that have a
parent-child relationship

= Work almost entirely independent of each other

+» The major components of a process are:
" An address space to hold data and instructions
= Open resources such as file descriptors
= Current state of execution

- Includes values of registers (including program counter and stack
pointer) and parts of memory (the Stack, in particular)

20

W UNIVERSITY of WASHINGTON L21: Intro to Concurrency CSE333, Summer 2023

Why Processes?

+» Advantages:

" Processes are isolated from one another
- No shared memory between processes
- If one crashes, the other processes keep going

"= No need for language support (OS provides fork)

+» Disadvantages:
= A lot of overhead during creation and context switching

= Cannot easily share memory between processes — typically must
communicate through the file system

21

W UNIVERSITY of WASHINGTON L21: Intro to Concurrency CSE333, Summer 2023

Worker Option 2: Threads

+» From within a process, we can separate out the concept
of a “thread of execution” (thread for short)

® Processes are the containers that hold shared resources and
attributes
- e.g., address space, file descriptors, security attributes

" Threads are independent, sequential execution streams (units of
scheduling) within a process

- e.g., stack, stack pointer, program counter, registers \0(0@/[7>

O
\9000}
P (w% ? 2 i
UZP\/\ X\F thread
\D/\ /

22

YW UNIVERSITY of WASHINGTON

L21: Intro to Concurrency

Threads vs. Processes

Stack

!

parent

I

Shared Libraries

CSE333, Summer 2023

Shared Libraries |

' Shared Libraries

I

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

<= PC

pakent

I

I

—

Heap (malloc/free) |

v Heap (malloc/free)

Read/Write Segments |-

)(Read/Write Segments

.data, .bss .data, .bss
Read-Only Segments/ i Read-Only S ents—
.text, .rodata text, .ro S

ild

23

W UNIVERSITY of WASHINGTON L21: Intro to Concurrency CSE333, Summer 2023

Threads vs. Processes

= Pomre ST

Pt

pakent

24

Multi-threaded Search Engine (Pseudocode)

(main() {
while (1) {
string query words[] = GetNextQuery ()

_—— CreateThread (ProcessQuery (query words)) ;
}

} (/b>bwm€ VJ §£(k<3
W/ \

[doclist Lookup (string word) {
bucket = hash (word);

hitlist = file.read (bucket);
foreach hit in hitlist

doclist.append(file.read (hit)); A“VWZJM\NQSPM++M6
eturn doelilets code into a function,
} and create a thread
that wvokes i1
ProcessQuery (string query words[]) {
results = Lookup (query words[0]);
foreach word in query[l..n]
results = results.intersect (Lookup (word)) ;
Display (results) ; NGO
U IR e

W UNIVERSITY of WASHINGTON L21: Intro to Concurrency CSE333, Summer 2023

25

YA UNIVERSITY of WASHINGTON

L21: Intro to Concurrency CSE333, Summer 2023

Multi-threaded Search Engine (Execution)

(%\NS ¢ C? U}
Note how only one
thread uses any

specific resource at a
time.

The OS schedules all
of +his for nsl ©

query 3
(Hrerh ’3)

query 2
(‘\\/\fﬁﬂkl>

query 1
(tweek 1)

A v
o @%((%\‘ SMS\L Cel S P Dton e pds

26

W UNIVERSITY of WASHINGTON L21: Intro to Concurrency CSE333, Summer 2023

Why Threads?

+» Advantages:
" You (mostly) write sequential-looking code

" Less overhead than processes during creation and context
switching

" Threads can run in parallel if you have multiple CPUs/cores

+ Disadvantages:

= |If threads share data, you need locks or other synchronization

(

- Very bug-prone and difficult to debug \ N M))&N”}
- T T
" Threads can introduce overhead W OO&)@

- Lock contention, context switch overhead, and other issues

% Need Iwort for threads

27

W UNIVERSITY of WASHINGTON L21: Intro to Concurrency CSE333, Summer 2023

Alternate: Non-blocking 1/0

+ Reading from the network can truly block your program

= Remote computer may wait arbitrarily long before sending data

+» Non-blocking 1/0O (network, console)
@ml% O-NoN@lLocle _
= Your program enables non-blocking 1/O on its file descriptors

" Your program issues read () andwrite () system calls
bTos X (g ﬁ)‘“ EyK/\JOULDBLOC\L) |<]7

- If the read/write would block, the system call returns immediately 5
" Program can ask the OS which file descriptors are (ng e

readable/writeable =2ect(y of ?ON\
- Program can choose to block while no file descriptors are ready

28

W UNIVERSITY of WASHINGTON L21: Intro to Concurrency CSE333, Summer 2023

Alternate: Asynchronous I/O

» Using asynchronous I/O, your program (almost never)
blocks on 1/0

» Your program begins processing a query

" When your program needs to read data to make further progress,
it registers interest in the data with the OS and then switches to a
different query

"= The OS handles the details of issuing the read on the disk, or
waiting for data from the console (or other devices, like the
network)

"= When data becomes available, the OS lets your program know by
. . ‘/—\—_—,
delivering an event

29

w UNIVERSITY of WASHINGTON L21: Intro to Concurrency CSE333, Summer 2023

Event-Driven Programming

Your program is structured as an event-loop

[void dispatch (task, event) lg&éﬁj

switch (task.state) {t/(pwﬂ

coda %U“ yur J‘ﬂmi szjm

wer X

Cre- lﬂ— ,/{(1
case READING FROM CONSOLE: “’;‘M ok UK U i)
query words = event.data;
async_read (index, query words([0]);
task.state = READING FROM INDEX; s MVDAOY3 notiee to
return; 05‘3 \/o
3
case READING FROM INDEX: for ik /
}
} !
nandle Wext zg
while (1) { / ,,.\N,uss W/ a

event = 0S.GetNextEvent ()
task = lookup (event) ;
dispatch (task, event);

}

30

W UNIVERSITY of WASHINGTON L21: Intro to Concurrency CSE333, Summer 2023

Asynchronous, Event-Driven

is the Query Number
#.a -> GetNextQuery ()
#.b -> network 1/0
#.c ->Lookup () & file.read ()
#.d -> Disk 1/0O
#H.e->Intersect ()
& Display ()

—

N
CPU 1.c & o

31

W UNIVERSITY of WASHINGTON L21: Intro to Concurrency CSE333, Summer 2023

Why Events?

+» Advantages:
= Don’t have to worry about locks and race conditions

" For some kinds of programs, especially GUIs, leads to a very
simple and intuitive program structure

« One event handler for each Ul event

+ Disadvantages:

= Can lead to very complex structure for programs that do lots of
disk and network I/O
Sequential code gets broken up into a jumble of small event handlers
/ « You have to package up all task state between handlers

T rds
s g o ohot i Here e (112
v n oo Y’

32

W UNIVERSITY of WASHINGTON L21: Intro to Concurrency CSE333, Summer 2023

Outline (next two lectures)

« We’ll look at different searchserver implementations
" Concurrent via dispatching threads — pthread create ()

" Concurrent via forking processes — fork ()
wedssdey

?rff*”\“]

%é Reference: Computer Systems: A Programmer’s
Perspective, Chapter 12 (CSE 351 book)

33

	Slide 1: About how long did Exercise 10 take you?
	Slide 2: Introduction to Concurrency CSE 333 Summer 2023
	Slide 3: Relevant Course Information (1/2)
	Slide 4: Relevant Course Information (2/2)
	Slide 5: Lecture Outline
	Slide 6: Building a Web Search Engine
	Slide 7: Search Engine Architecture
	Slide 8: Sequential Search Engine (Pseudocode)
	Slide 9: Why Sequential?
	Slide 10: Execution Timeline: a Multi-Word Query
	Slide 11: What About I/O-caused Latency?
	Slide 12: Execution Timeline: (Loosely) To Scale
	Slide 13: Multiple (Single-Word) Queries
	Slide 14: Multiple Queries: (Loosely) To Scale
	Slide 15: Sequential Issues
	Slide 16: Sequential Can Be Inefficient
	Slide 17: Lecture Outline
	Slide 18: Concurrency
	Slide 19: A Concurrent Implementation
	Slide 20: Worker Option 1: Processes (Review)
	Slide 21: Why Processes?
	Slide 22: Worker Option 2: Threads
	Slide 23: Threads vs. Processes
	Slide 24: Threads vs. Processes
	Slide 25: Multi-threaded Search Engine (Pseudocode)
	Slide 26: Multi-threaded Search Engine (Execution)
	Slide 27: Why Threads?
	Slide 28: Alternate: Non-blocking I/O
	Slide 29: Alternate: Asynchronous I/O
	Slide 30: Event-Driven Programming
	Slide 31: Asynchronous, Event-Driven
	Slide 32: Why Events?
	Slide 33: Outline (next two lectures)

