
CSE333, Summer 2023L20: HTTP

1

Which concept gave you the most difficulty
in the context of Homework 3?

A. Understanding the index file layout
B. C++ Classes & Inheritance
C. C++ STL
D. Query Processor Algorithm
E. Debugging/GDB
F. Style considerations
G. Prefer not to say

pollev.com/cse333

CSE333, Summer 2023L20: HTTP

Hypertext Transfer Protocol
CSE 333 Summer 2023

Instructor: Timmy Yang

Teaching Assistants:

Jennifer Xu Leanna Nguyen Pedro Amarante

Sara Deutscher Tanmay Shah

CSE333, Summer 2023L20: HTTP

Relevant Course Information (1/2)

❖ Exercise 10 due Monday (8/7)

▪ Client-side programming

❖ Exercise 11 due Thursday (8/10)

▪ Server-side programming

▪ Can use ex10 client solution to send messages to ex11 server

❖ Homework 4 due Wednesday (8/16)

▪ Files going out late today (evening, 9-10pm at the latest)

▪ Partnership form released, closes Thursday (8/10) @ 11:59pm

▪ Can still use 2 late days for hw4 (hard deadline of 8/18)

▪ Part of section next week will cover tools for debugging hw4

3

CSE333, Summer 2023L20: HTTP

Relevant Course Information (2/2)

❖ Quiz 3

▪ Open Monday (8/7) @ 2pm to Wednesday (8/9) @ 11:59pm

▪ Will include questions about:

• Exercise 7, 8 and 9

• Homework 3

❖ Quiz 4

▪ Open Wednesday (8/16) @ 2pm to Friday (8/18) @ 11:59pm

▪ Will include questions about:

• Exercise 10, 11, and 12

• Homework 4

• Course wrap-up

4

CSE333, Summer 2023L20: HTTP

Homework 4 Summary

❖ Build a Multithreaded Web Server (333gle)
▪ You will host the querying service that you built in your previous

homework on a web server

❖ Running your server
▪ ./http333d <port> <static files> <unit indices>

▪ Static files are the files on disk corresponding to our index files

▪ You (and others) can access it on any browser now!

❖ Implementation
▪ Using network protocols to communicate between client/server

▪ Handling some additional security flaws

▪ Note: Multithreading is already implemented for you

5

CSE333, Summer 2023L20: HTTP

Client and Server Communication

❖ Lecture 19 (Client-side and Server-side Networking) has
already shown how to to this in C/C++
▪ sendreceive.cc and server_accept_rw_close.cc

❖ This is what actually happens on the web!

▪ Clients establish a stable TCP connection the server

▪ Lots of bytes are interchanged/processed between each other

6

“I’d like index.html”

“Found it, here it is: (index.html)”

CSE333, Summer 2023L20: HTTP

Case Study of Protocols: HTTP

❖ A protocol defines a set of rules governing the format and
exchange of messages in a computing system

▪ Syntax: The formatting or grammar of the system

▪ Semantics: What messages are being exchanged

▪ Allows everyone be on the same page of communication

❖ Hypertext Transfer Protocol: Request/Response Protocol

▪ HTTP defines how we should send information between a client
and a server

▪ A request will send a message to the server (about anything)

▪ A response will process and respond to that message

▪ And it’s human readable!

7

CSE333, Summer 2023L20: HTTP

Requests: Client Sending Messages

❖ A client wants to talk to a server about something

▪ Initiates a conversation (establish or using existing connection)

▪ Generally, this is for retrieving a resource, using Uniform
Resource Identifier (URI)

❖ Standard Syntax:
▪ [METHOD] [request-uri] HTTP/[version]\r\n

[headerfield1]: [fieldvalue1]\r\n

[headerfield2]: [fieldvalue2]\r\n

[...]

[headerfieldN]: [fieldvalueN]\r\n

\r\n

[request body, if any]

8

CSE333, Summer 2023L20: HTTP

HTTP Methods

❖ There are three commonly-used HTTP methods:
▪ GET: “Please send me the named resource”

9

GET:

REQUEST

RESPONSE

HEADERS

BODY

HEADERS

CLIENT
(Web Browser)

SERVER

CSE333, Summer 2023L20: HTTP

HTTP Methods

❖ There are three commonly-used HTTP methods:
▪ GET: “Please send me the named resource”

▪ POST: “I’d like to submit data to you” (e.g. file upload)

10

POST:

REQUEST

RESPONSE

HEADERS

BODY

HEADERS

CLIENT
(Web Browser)

SERVER

CSE333, Summer 2023L20: HTTP

HTTP Methods

❖ There are three commonly-used HTTP methods:
▪ GET: “Please send me the named resource”

▪ POST: “I’d like to submit data to you” (e.g. file upload)

▪ HEAD: “Send me the headers for the named resource”

• Doesn’t send resource; often to check if cached copy is still valid

11

HEAD:

REQUEST

RESPONSE

HEADERS

HEADERS

CLIENT
(Web Browser)

SERVER

CSE333, Summer 2023L20: HTTP

HTTP Methods

❖ There are three commonly-used HTTP methods:
▪ GET: “Please send me the named resource”

▪ POST: “I’d like to submit data to you” (e.g. file upload)

▪ HEAD: “Send me the headers for the named resource”

• Doesn’t send resource; often to check if cached copy is still valid

❖ Other methods exist, but are much less common:
▪ PUT, DELETE, TRACE, OPTIONS, CONNECT, PATCH, ...

• For instance: TRACE – “show any proxies or caches in between me
and the server”

▪ https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods

12

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods

CSE333, Summer 2023L20: HTTP

Client Headers

❖ The client can provide one or more request “headers”

▪ These provide information to the server or modify how the server
should process the request

❖ You’ll encounter many in practice
▪ Host: the DNS name of the server

▪ User-Agent: an identifying string naming the browser

▪ Accept: the content types the client prefers or can accept

▪ Cookie: an HTTP cookie previously set by the server

▪ https://www.rfc-editor.org/rfc/rfc2616.html#section-5.3

13

https://www.rfc-editor.org/rfc/rfc2616.html#section-5.3

CSE333, Summer 2023L20: HTTP

A Real Request

❖ Demo: use nc to see a real HTTP request

14

GET / HTTP/1.1

Host: attu.cs.washington.edu:3333

Connection: keep-alive

Upgrade-Insecure-Requests: 1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/66.0.3359.181 Safari/537.36

Cookie:

SESS0c8e598bbe17200b27e1d0a18f9a42bb=5c18d7ed6d369d56b69a1

c0aa441d

...

CSE333, Summer 2023L20: HTTP

Response: Server Responding

❖ A server parses and sends a response to a user

▪ Indicate how the server processed the request (accepted or not)

▪ Send requested resource back to the client

❖ General form:
▪ HTTP/[version] [status code] [reason]\r\n

[headerfield1]: [fieldvalue1]\r\n

[headerfield2]: [fieldvalue2]\r\n

[...]

[headerfieldN]: [fieldvalueN]\r\n

\r\n

[response body, if any]

15

CSE333, Summer 2023L20: HTTP

Status Codes and Reason

❖ Code: numeric outcome of the request – easy for
computers to interpret

▪ A 3-digit integer with the 1st digit indicating a response category

• 1xx: Informational message

• 2xx: Success

• 3xx: Redirect to a different URL

• 4xx: Error in the client’s request

• 5xx: Error experienced by the server

❖ Reason: human-readable explanation

▪ e.g. “OK” or “Moved Temporarily”

❖ https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
16

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

CSE333, Summer 2023L20: HTTP

Common Statuses

❖ HTTP/1.1 200 OK

▪ The request succeeded and the requested object is sent

❖ HTTP/1.1 404 Not Found

▪ The requested object was not found

❖ HTTP/1.1 301 Moved Permanently

▪ The object exists, but its name has changed

• The new URL is given as the “Location:” header value

❖ HTTP/1.1 500 Server Error

▪ The server had some kind of unexpected error

17

CSE333, Summer 2023L20: HTTP

Server Headers

❖ The server can provide zero or more response “headers”

▪ These provide information to the client or modify how the client
should process the response

❖ You’ll encounter many in practice
▪ Server: a string identifying the server software

▪ Content-Type: the type of the requested object

▪ Content-Length: size of requested object

▪ Last-Modified: a date indicating the last time the request
object was modified

▪ https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers

▪ https://developer.mozilla.org/en-
US/docs/Web/HTTP/Basics_of_HTTP/MIME_types

18

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types

CSE333, Summer 2023L20: HTTP

A Real Response

❖ Demo: Use nc -C to see real HTTP responses*

▪ -C argument allows us to send carriage returns over nc

*may be nc –c on your system, use man nc to check options
19

HTTP/1.1 200 OK

Date: Mon, 21 May 2018 07:58:46 GMT

Server: Apache/2.2.32 (Unix) mod_ssl/2.2.32

OpenSSL/1.0.1e-fips mod_pubcookie/3.3.4a mod_uwa/3.2.1

Phusion_Passenger/3.0.11

Last-Modified: Mon, 21 May 2018 07:58:05 GMT

Content-Length: 82

Content-Type: text/html

...

<html><body>

Awesome!!

</body></html>

CSE333, Summer 2023L20: HTTP

20

Which statement is FALSE about the HTTP/1.1
Protocol?

A. HTTP is a standard communication protocol for the web

B. A client always sends a message first before the server

C. An HTTP Request can only request one resource at a time

D. An HTTP Response needs to have a response body

E. I’m not really sure…

pollev.com/cse333

CSE333, Summer 2023L20: HTTP

HTTP/1.1 Protocol

❖ HTTP / 1.1 (1997) – The protocols accepted by all current
browsers and servers

▪ Built after HTTP/0.9 (1991) and HTTP/1.0 (1996)

▪ Better performance, richer caching features, better support for
multihomed servers, and much more

❖ “Chunked Transfer-Encoding” – Send responses in
multiple pieces (Transfer-Encoding: chunked)

▪ https://en.wikipedia.org/wiki/List_of_HTTP_header_fields#transf
er-encoding-response-header

❖ Persistent Connections: TCP connections can handle
multiple requests (Connection: keep-alive)

21

https://en.wikipedia.org/wiki/List_of_HTTP_header_fields#transfer-encoding-response-header
https://en.wikipedia.org/wiki/List_of_HTTP_header_fields#transfer-encoding-response-header

CSE333, Summer 2023L20: HTTP

Improvements: HTTP/2 and HTTP/3

❖ Human-readable text protocols can only go so far…

❖ HTTP/2 (2015) was a push to optimize HTTP/1.1

▪ Built off Google Project SPDY which aimed to reduce latency

▪ Compressed headers and message body

▪ Many larger companies quickly transitioned

▪ https://en.wikipedia.org/wiki/HTTP/2

❖ HTTP/3 (2022) builds even more on HTTP/2

▪ Mainly using UDP-based protocol called QUIC (holds a standard
connection like TCP)

▪ https://en.wikipedia.org/wiki/HTTP/3

22

https://en.wikipedia.org/wiki/HTTP/2
https://en.wikipedia.org/wiki/HTTP/3

CSE333, Summer 2023L20: HTTP

Slow to Change: HTTP Protocols

❖ HTTP/1.1 is still used today (1996 – Present)

▪ https://almanac.httparchive.org/en/2022/http#fig-1

▪ ~20% of requests still use HTTP/1.1

▪ https://almanac.httparchive.org/en/2019/http#fig-3

▪ Down from ~50% of requests 4 years ago

❖ Why is the transition taking so long?

▪ Lack of knowledge about HTTP/2+

▪ A good portion of web servers are still using HTTP/1.1

▪ It takes engineering work to support a new HTTP protocol

▪ HTTP/1.1 is human readable

▪ Amongst more…

23

https://almanac.httparchive.org/en/2022/http#fig-1
https://almanac.httparchive.org/en/2019/http#fig-3

CSE333, Summer 2023L20: HTTP

In Other Words…

24

https://xkcd.com/2105/

https://xkcd.com/2105/

CSE333, Summer 2023L20: HTTP

Extra Exercise #1

❖ Write a program that:

▪ Creates a listening socket that accepts connections from clients

▪ Reads a line of text from the client

▪ Parses the line of text as a DNS name

▪ Connects to that DNS name on port 80

▪ Writes a valid HTTP request for “/”

▪ Reads the reply and returns it to the client

26

GET / HTTP/1.1\r\n

Host: <DNS name>\r\n

Connection: close\r\n

\r\n

	Slide 1: Which concept gave you the most difficulty in the context of Homework 3?
	Slide 2: Hypertext Transfer Protocol CSE 333 Summer 2023
	Slide 3: Relevant Course Information (1/2)
	Slide 4: Relevant Course Information (2/2)
	Slide 5: Homework 4 Summary
	Slide 6: Client and Server Communication
	Slide 7: Case Study of Protocols: HTTP
	Slide 8: Requests: Client Sending Messages
	Slide 9: HTTP Methods
	Slide 10: HTTP Methods
	Slide 11: HTTP Methods
	Slide 12: HTTP Methods
	Slide 13: Client Headers
	Slide 14: A Real Request
	Slide 15: Response: Server Responding
	Slide 16: Status Codes and Reason
	Slide 17: Common Statuses
	Slide 18: Server Headers
	Slide 19: A Real Response
	Slide 20: Which statement is FALSE about the HTTP/1.1 Protocol?
	Slide 21: HTTP/1.1 Protocol
	Slide 22: Improvements: HTTP/2 and HTTP/3
	Slide 23: Slow to Change: HTTP Protocols
	Slide 24: In Other Words…
	Slide 26: Extra Exercise #1

