
CSE333, Summer 2023L19: Client-side & Server-side Network Programming

Client-side and Server-side
Network Programming
CSE 333 Summer 2023

Instructor: Timmy Yang

Teaching Assistants:

Jennifer Xu Leanna Nguyen Pedro Amarante

Sara Deutscher Tanmay Shah

CSE333, Summer 2023L19: Client-side & Server-side Network Programming

Relevant Course Information (1/2)

❖ Homework 3 due tomorrow

▪ Usual reminder: don’t forget to tag, clone elsewhere, and
recompile (will need to copy libhw1.a and libhw2.a)

❖ Homework 4 to be released Friday (8/4)

▪ Due last Wednesday of quarter (8/16)

▪ Can still use 2 late days for hw4 (hard deadline of 8/18)

▪ Demo next lecture

❖ Exercise 10 released today, due Wednesday (3/1)

▪ Client-side TCP connection

❖ Exercise 11 released today, due Friday (3/3)

▪ Server-side programming

2

CSE333, Summer 2023L19: Client-side & Server-side Network Programming

Relevant Course Information (2/2)

❖ Quiz 3

▪ Open Monday (8/7) @ 2pm to Wednesday (8/9) @ 11:59pm

▪ Will include questions about:

• Exercise 7, 8 and 9

• Homework 3

❖ Quiz 4

▪ Open Wednesday (8/16) @ 2pm to Friday (8/18) @ 11:59pm

▪ Will include questions about:

• Exercise 10, 11, and 12

• Homework 4

• Course wrap-up

3

CSE333, Summer 2023L19: Client-side & Server-side Network Programming

Socket API: Client TCP Connection

❖ There are five steps:

1) Figure out the IP address and port to connect to

2) Create a socket

3) Connect the socket to the remote server

4) .read() and write() data using the socket

5) Close the socket

4

CSE333, Summer 2023L19: Client-side & Server-side Network Programming

Step 2: Creating a Socket

❖ Use the socket() system call

▪ Creating a socket doesn’t bind it to a local address or port yet

▪ Returns file descriptor or -1 on error

5

int socket(int domain, int type, int protocol);

#include <arpa/inet.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include <iostream>

int main(int argc, char** argv) {

 int socket_fd = socket(AF_INET, SOCK_STREAM, 0);

 if (socket_fd == -1) {

 std::cerr << strerror(errno) << std::endl;

 return EXIT_FAILURE;

 }

 close(socket_fd);

 return EXIT_SUCCESS;

}

socket.cc

CSE333, Summer 2023L19: Client-side & Server-side Network Programming

Step 3: Connect to the Server

❖ The connect() system call establishes a connection to
a remote host

▪

• sockfd: Socket file description from Step 2

• addr and addrlen: Usually from one of the address structures
returned by getaddrinfo in Step 1 (DNS lookup)

• Returns 0 on success and -1 on error

❖ connect() may take some time to return

▪ It is a blocking call by default

▪ The network stack within the OS will communicate with the
remote host to establish a TCP connection to it

• This involves ~2 round trips across the network

6

int connect(int sockfd, const struct sockaddr* addr,

 socklen_t addrlen);

CSE333, Summer 2023L19: Client-side & Server-side Network Programming

Connect Example

❖ See connect.cc

7

// Get an appropriate sockaddr structure.

struct sockaddr_storage addr;

size_t addrlen;

LookupName(argv[1], port, &addr, &addrlen);

// Create the socket.

int socket_fd = socket(addr.ss_family, SOCK_STREAM, 0);

if (socket_fd == -1) {

 cerr << "socket() failed: " << strerror(errno) << endl;

 return EXIT_FAILURE;

}

// Connect the socket to the remote host.

int res = connect(socket_fd,

 reinterpret_cast<sockaddr*>(&addr),

 addrlen);

if (res == -1) {

 cerr << "connect() failed: " << strerror(errno) << endl;

}

CSE333, Summer 2023L19: Client-side & Server-side Network Programming

8

pollev.com/cse333

How do we error check read() and write()?

A. ferror()

B. Return value less than expected

C. Return value of 0 or NULL

D. Return value of -1

E. We’re lost…

CSE333, Summer 2023L19: Client-side & Server-side Network Programming

Step 4: read()

❖ If there is data that has already been received by the
network stack, then read will return immediately with it
▪ read() might return with less data than you asked for

❖ If there is no data waiting for you, by default read()
will block until something arrives

▪ How might this cause deadlock?

▪ Can read() return 0?

9

CSE333, Summer 2023L19: Client-side & Server-side Network Programming

Step 4: write()

❖ write() queues your data in a send buffer in the OS
and then returns

▪ The OS transmits the data over the network in the background

▪ When write() returns, the receiver probably has not yet
received the data!

❖ If there is no more space left in the send buffer, by default
write() will block

10

CSE333, Summer 2023L19: Client-side & Server-side Network Programming

Read/Write Example

❖ See sendreceive.cc

11

while (1) {

 int wres = write(socket_fd, readbuf, res);

 if (wres == 0) {

 cerr << "socket closed prematurely" << endl;

 close(socket_fd);

 return EXIT_FAILURE;

 }

 if (wres == -1) {

 if (errno == EINTR)

 continue;

 cerr << "socket write failure: " << strerror(errno) << endl;

 close(socket_fd);

 return EXIT_FAILURE;

 }

 break;

}

CSE333, Summer 2023L19: Client-side & Server-side Network Programming

Step 5: close()

❖

▪ Nothing special here – it’s the same function as with file I/O

▪ Shuts down the socket and frees resources and file descriptors
associated with it on both ends of the connection

12

int close(int fd);

CSE333, Summer 2023L19: Client-side & Server-side Network Programming

Socket API: Server TCP Connection

❖ Pretty similar to clients, but with additional steps:

1) Figure out the IP address and port on which to listen

2) Create a socket

3) bind() the socket to the address(es) and port

4) Tell the socket to listen() for incoming clients

5) accept() a client connection

6) .read() and write() to that connection

7) close() the client socket

13

CSE333, Summer 2023L19: Client-side & Server-side Network Programming

Servers

❖ Servers can have multiple IP addresses (“multihoming”)

▪ Usually have at least one externally-visible IP address, as well as a
local-only address (127.0.0.1)

❖ The goals of a server socket are different than a client
socket

▪ Want to bind the socket to a particular port of one or more IP
addresses of the server

▪ Want to allow multiple clients to connect to the same port

• OS uses client IP address and port numbers to direct I/O to the
correct server file descriptor

14

CSE333, Summer 2023L19: Client-side & Server-side Network Programming

Step 1: Figure out IP address(es) & Port

❖ Step 1: getaddrinfo() invocation may or may not be
needed (but we’ll use it)

▪ Do you know your IP address(es) already?

• Static vs. dynamic IP address allocation

• Even if the machine has a static IP address, don’t wire it into the code
– either look it up dynamically or use a configuration file

▪ Can request listen on all local IP addresses by passing NULL as
hostname and setting AI_PASSIVE in hints.ai_flags

• Effect is to use address 0.0.0.0 (IPv4) or :: (IPv6)

15

Common and hard-to-find bug is

forgetting to set this

CSE333, Summer 2023L19: Client-side & Server-side Network Programming

Step 2: Create a Socket

❖ Step 2: socket() call is same as before

▪ Can directly use constants or fields from result of
getaddrinfo()

▪ Recall that this just returns a file descriptor – IP address and port
are not associated with socket yet

16

CSE333, Summer 2023L19: Client-side & Server-side Network Programming

Step 3: Bind the socket

❖

▪ Looks nearly identical to connect()!

▪ Returns 0 on success, -1 on error

❖ Some specifics for addr:

▪ Address family: AF_INET or AF_INET6

• What type of IP connections can we accept?

• POSIX systems can handle IPv4 clients via IPv6 ☺

▪ Port: port in network byte order (htons() is handy)

▪ Address: specify particular IP address or any IP address

• “Wildcard address” – INADDR_ANY (IPv4), in6addr_any (IPv6)

17

int bind(int sockfd, const struct sockaddr* addr,

 socklen_t addrlen);

CSE333, Summer 2023L19: Client-side & Server-side Network Programming

Step 4: Listen for Incoming Clients

❖

▪ Tells the OS that the socket is a listening socket that clients can
connect to

▪ backlog: maximum length of connection queue

• Gets truncated, if necessary, to defined constant SOMAXCONN

• The OS will refuse new connections once queue is full until server
accept()s them (removing them from the queue)

▪ Returns 0 on success, -1 on error

▪ Clients can start connecting to the socket as soon as listen()
returns

• Server can’t use a connection until you accept() it

18

int listen(int sockfd, int backlog);

CSE333, Summer 2023L19: Client-side & Server-side Network Programming

Example #1

❖ See server_bind_listen.cc

▪ Takes in a port number from the command line

▪ Opens a server socket, prints info, then listens for connections for
20 seconds

• Can connect to it using netcat (nc)

19

CSE333, Summer 2023L19: Client-side & Server-side Network Programming

Step 5: Accept a Client Connection

❖

▪ Returns an active, ready-to-use socket file descriptor connected
to a client (or -1 on error)

• sockfd must have been created, bound, and listening

• Pulls a queued connection or waits for an incoming one

▪ addr and addrlen are output parameters

• *addrlen should initially be set to sizeof(*addr), gets
overwritten with the size of the client address

• Address information of client is written into *addr

– Use inet_ntop() to get the client’s printable IP address

– Use getnameinfo() to do a reverse DNS lookup on the client

20

int accept(int sockfd, struct sockaddr* addr,

 socklen_t* addrlen);

CSE333, Summer 2023L19: Client-side & Server-side Network Programming

Example #2

❖ See server_accept_rw_close.cc

▪ Takes in a port number from the command line

▪ Opens a server socket, prints info, then listens for connections

• Can connect to it using netcat (nc)

▪ Accepts connections as they come

▪ Echoes any data the client sends to it on stdout and also sends
it back to the client

21

CSE333, Summer 2023L19: Client-side & Server-side Network Programming

Something to Note

❖ Our server code is not concurrent

▪ Single thread of execution

▪ The thread blocks while waiting for the next connection

▪ The thread blocks waiting for the next message from the
connection

❖ A crowd of clients is, by nature, concurrent

▪ While our server is handling the next client, all other clients are
stuck waiting for it

22

CSE333, Summer 2023L19: Client-side & Server-side Network Programming

Extra Exercise #1

❖ Write a program that:
▪ Reads DNS names, one per line, from stdin

▪ Translates each name to one or more IP addresses

▪ Prints out each IP address to stdout, one per line

23

	Slide 1: Client-side and Server-side Network Programming CSE 333 Summer 2023
	Slide 2: Relevant Course Information (1/2)
	Slide 3: Relevant Course Information (2/2)
	Slide 4: Socket API: Client TCP Connection
	Slide 5: Step 2: Creating a Socket
	Slide 6: Step 3: Connect to the Server
	Slide 7: Connect Example
	Slide 8: How do we error check read() and write()?
	Slide 9: Step 4: read()
	Slide 10: Step 4: write()
	Slide 11: Read/Write Example
	Slide 12: Step 5: close()
	Slide 13: Socket API: Server TCP Connection
	Slide 14: Servers
	Slide 15: Step 1: Figure out IP address(es) & Port
	Slide 16: Step 2: Create a Socket
	Slide 17: Step 3: Bind the socket
	Slide 18: Step 4: Listen for Incoming Clients
	Slide 19: Example #1
	Slide 20: Step 5: Accept a Client Connection
	Slide 21: Example #2
	Slide 22: Something to Note
	Slide 23: Extra Exercise #1

