W UNIVERSITY of WASHINGTON L19: Client-side & Server-side Network Programming CSE333, Summer 2023

Client-side and Server-side

Network Programming
CSE 333 Summer 2023

Instructor: Timmy Yang

Teaching Assistants:
Jennifer Xu Leanna Nguyen Pedro Amarante
Sara Deutscher Tanmay Shah

W UNIVERSITY of WASHINGTON L19: Client-side & Server-side Network Programming CSE333, Summer 2023

Relevant Course Information (1/2)

» Homework 3 due tomorrow

= Usual reminder: don’t forget to tag, clone elsewhere, and
recompile (will need to copy libhw1.a and libhw?2.a)

» Homework 4 released Friday
" Due last Wednesday of quarter (8/16)

= Can still use 2 late days for hw4 (hard deadline of 8/18)
" Demo next lecture

» Exercise 10 released today, due Wednesday (3/1)

" Client-side TCP connection

» Exercise 11 released today, due Friday (3/3)

= Server-side programming

W UNIVERSITY of WASHINGTON L19: Client-side & Server-side Network Programming CSE333, Summer 2023

Relevant Course Information (2/2)

» Quiz 3
= Open Monday (8/7) @ 2pm to Wednesday (8/9) @ 11:59pm
= Will include questions about:

- Exercise 7,8 and 9
- Homework 3

» Quiz4
= Open Wednesday (8/16) @ 2pm to Friday (8/18) @ 11:59pm

= Will include questions about:
- Exercise 10, 11, and 12
- Homework 4
- Course wrap-up

W UNIVERSITY of WASHINGTON L19: Client-side & Server-side Network Programming CSE333, Summer 2023

Socket API: Client TCP Connection

+ There are five steps:
1) Figure out the IP address and port to connect to
2) Create a socket
3) Connect the socket to the remote server
4) read () andwrite () data using the socket

5) Close the socket

W UNIVERSITY of WASHINGTON L19: Client-side & Server-side Network Programming

Step 2: Creating a Socket

CSE333, Summer 2023

D)

L)

* | int socket (int domain, int type,

int protocol);

" Creating a socket doesn’t bind it to a local address or port yet

= Returns file descriptor or -1 on error

socket.cc

7

#include <arpa/inet.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <iostream>

int main (int argc, char** argv) {

int socket fd = socket (AF INET,

1f (socket fd == -1) {
std::cerr << strerror (errno)
return EXIT FAILURE;

}

close (socket fd);

return EXIT SUCCESS;

SOCK_STREAM,

<< std::endl;

0);

)

W UNIVERSITY of WASHINGTON L19: Client-side & Server-side Network Programming CSE333, Summer 2023

Step 3: Connect to the Server

+ The connect () system call establishes a connection to
a remote host

B | int connect(int sockfd, const struct sockaddr* addr,
socklen t addrlen);

- sockfd: Socket file description from Step 2

- addr and addrlen: Usually from one of the address structures
returned by getaddrinfo in Step 1 (DNS lookup)

« Returns 0 on success and -1 on error

+» connect () may take some time to return

= |tis a blocking call by default

" The network stack within the OS will communicate with the
remote host to establish a TCP connection to it

- This involves ~2 round trips across the network

W UNIVERSITY of WASHINGTON L19: Client-side & Server-side Network Programming CSE333, Summer 2023

Connect Example

« See connect.cc

[// Get an appropriate sockaddr structure.
struct sockaddr storage addr;

size t addrlen;

LookupName (argv([l], port, &addr, &addrlen);

// Create the socket.
int socket fd = socket (addr.ss family, SOCK STREAM, O0);
1f (socket fd == -1) {
cerr << "socket () failed: " << strerror (errno) << endl;
return EXIT FAILURE;

}

// Connect the socket to the remote host.

int res = connect (socket fd,
reinterpret cast<sockaddr*>(&addr),
addrlen) ;
1f (res == -1) {
cerr << "connect () failed: " << strerror (errno) << endl;

W UNIVERSITY of WASHINGTON L19: Client-side & Server-side Network Programming CSE333, Summer 2023

@ PO" Evel‘yWheI‘e pollev.com/cse333

How do we error check read () and write ()?

A.

B. Return value less than expected
C. Return value of 0 or NULL

D. Return value of -1 for Ele T/o

E. We’re lost...

T
G le\sc depends.. m \<w.9r

W UNIVERSITY of WASHINGTON L19: Client-side & Server-side Network Programming CSE333, Summer 2023

Step 4: read ()

+ If there is data that has already been received by the
network stack, then read will return immediately with it
" read () might return with /ess data than you asked for

» |f there is no data waiting for you, by default read ()

will block until something arrives
* How might this cause deadlock? serer cext e no data b vead, bit bth al @y)
= Can read () return 0? Yes, if cmedion is closed
’\I{)(Ne‘fwrk T/D

" rf@

r\/\IO\\V\C

evsds
(i) e\’e o CM+]/cw;\
. e"‘/’* \\/ deperds... 9

CSE333, Summer 2023

W UNIVERSITY of WASHINGTON L19: Client-side & Server-side Network Programming

Step 4: write ()

+» write () queuesyour datain a send buffer in the OS

and then returns
" The OS transmits the data over the network in the background

" When write () returns, the receiver probably has not yet
received the data!

+ If there is no more space left in the send buffer, by default
write () will block

10

W UNIVERSITY of WASHINGTON L19: Client-side & Server-side Network Programming CSE333, Summer 2023

Read/Write Example

+ See sendreceive.cc

[while (1) {
int wres = write(socket fd, readbuf, res);
1f (wres == 0) {
cerr << "socket closed prematurely" << endl;
close (socket fd);
return EXIT FAILURE;
}
1f (wres == —-1) {
1f (errno == EINTR)
continue;
cerr << "socket write faillure: " << strerror (errno) << endl;
close (socket fd);
return EXIT FAILURE;
}

break;

11

W UNIVERSITY of WASHINGTON L19: Client-side & Server-side Network Programming CSE333, Summer 2023

Step 5: close ()

“|1nt close(int fd);

= Nothing special here —it’s the same function as with file I/O

= Shuts down the socket and frees resources and file descriptors
associated with it on both ends of the connection

12

W UNIVERSITY of WASHINGTON L19: Client-side & Server-side Network Programming CSE333, Summer 2023

Socket API: Server TCP Connection

» Pretty similar to clients, but with additional steps: /Avng/@y:
1) Figure out the IP address and port on which to listen®find a loction/boy and
2) Create a socket ®@ huild the structinre
3) bind () the socket to the address(es) and port(® prep work t odvertising
4) Tell the socket to Listen () for incoming clients @ open Tre door (‘?:Ztgn)
5) accept () aclient connection ®" rext wslomer in line!”
6) read() andwrite () tothat connection © fasacion ocurs

7) close () the client socket @ cuslomer leaves

13

W UNIVERSITY of WASHINGTON L19: Client-side & Server-side Network Programming CSE333, Summer 2023

Servers

+ Servers can have multiple IP addresses (“multihoming”)

= Usually have at least one externally-visible IP address, as well as a
local-only address (127.0.0.1)

+ The goals of a server socket are different than a client
socket

= Want to bind the socket to a particular port of one or more IP
addresses of the server

= Want to allow multiple clients to connect to the same port

-« OS uses client IP address and port numbers to direct |/O to the
correct server file descriptor

14

W UNIVERSITY of WASHINGTON L19: Client-side & Server-side Network Programming CSE333, Summer 2023

Step 1: Figure out IP address(es) & Port

» Step 1: getaddrinfo () invocation may or may not be
needed (but we’ll use it)

= Do you know your IP address(es) already?
- Static vs. dynamic IP address allocation

- Even if the machine has a static IP address, don’t wire it into the code
— either look it up dynamically or use a configuration file

= Can request listen on all local IP addresses by passing NUL L as
hostname and setting AT PASSIVE inhints.ai flags

- Effectis touse address 0.0.0.0 (IPv4) or : : (IPv6) \

Common and hard-to-find bug is
forgetting to set this ®

15

W UNIVERSITY of WASHINGTON L19: Client-side & Server-side Network Programming CSE333, Summer 2023

Step 2: Create a Socket

» Step 2: socket () callis same as before

® Can directly use constants or fields from result of
getaddrinfo ()

= Recall that this just returns a file descriptor — IP address and port
are not associated with socket yet

16

W UNIVERSITY of WASHINGTON L19: Client-side & Server-side Network Programming CSE333, Summer 2023

Step 3: Bind the socket

% | int bind(int sockfd, const struct sockaddr* addr,
socklen t addrlen);

" Looks nearly identical to connect () !

" Returns 0 on success, =1 on error

+» Some specifics for addr:
= Address family: 27 TNET or AF TNET6

- What type of IP connections can we accept?
- POSIX systems can handle IPv4 clients via IPv6 ©

" Port: portin network byte order (htons () is handy)

= Address: specify particular IP address or any IP address
- “Wildcard address” — INADDR ANY (IPv4), in6addr any (IPv6)

17

W UNIVERSITY of WASHINGTON L19: Client-side & Server-side Network Programming CSE333, Summer 2023

Step 4: Listen for Incoming Clients

+ |int listen(int sockfd, int backlog);

= Tells the OS that the socket is a listening socket that clients can
connect to

" backlog: maximum length of connection queue
- Gets truncated, if necessary, to defined constant SOMAXCONN

- The OS will refuse new connections once queue is full until server
accept ()s them (removing them from the queue)

" Returns 0 on success, —1 on error

= Clients can start connecting to the socket as soonas listen ()
returns

- Server can’t use a connection until you accept () it

18

W UNIVERSITY of WASHINGTON L19: Client-side & Server-side Network Programming CSE333, Summer 2023

Example #1

+» See server_bind_listen.cc
" Takes in a port number from the command line

" Opens a server socket, prints info, then listens for connections for
20 seconds

- Can connect to it using netcat (nc)

19

W UNIVERSITY of WASHINGTON L19: Client-side & Server-side Network Programming CSE333, Summer 2023

Step 5: Accept a Client Connection

% | int accept(int sockfd, struct sockaddr* addr,
socklen t* addrlen);

= Returns an active, ready-to-use socket file descriptor connected
to a client (or =1 on error)

- sockfd must have been created, bound, and listening
- Pulls a queued connection or waits for an incoming one
" addr and addrlen are output parameters

- *addrlen should initially be setto sizeof (*addr), gets
overwritten with the size of the client address

- Address information of client is written into *addr
— Use inet ntop () to get the client’s printable IP address
— Use getnameinfo () to do areverse DNS lookup on the client

20

W UNIVERSITY of WASHINGTON L19: Client-side & Server-side Network Programming CSE333, Summer 2023

Example #2

+ See server_accept_rw_close.cc

" Takes in a port number from the command line

" Opens a server socket, prints info, then listens for connections
- Can connect to it using netcat (nc)

= Accepts connections as they come

" Echoes any data the client sends to it on stdout and also sends
it back to the client

21

W UNIVERSITY of WASHINGTON L19: Client-side & Server-side Network Programming CSE333, Summer 2023

Something to Note

« QOur server code is not concurrent
= Single thread of execution
" The thread blocks while waiting for the next connection

" The thread blocks waiting for the next message from the
connection

« A crowd of clients is, by nature, concurrent

= While our server is handling the next client, all other clients are
stuck waiting for it ®

22

W UNIVERSITY of WASHINGTON L19: Client-side & Server-side Network Programming CSE333, Summer 2023

Extra Exercise #1

+» Write a program that:
= Reads DNS names, one per line, from stdin

" Translates each name to one or more |IP addresses
" Prints out each IP address to stdout, one per line

23

	Slide 1: Client-side and Server-side Network Programming CSE 333 Summer 2023
	Slide 2: Relevant Course Information (1/2)
	Slide 3: Relevant Course Information (2/2)
	Slide 4: Socket API: Client TCP Connection
	Slide 5: Step 2: Creating a Socket
	Slide 6: Step 3: Connect to the Server
	Slide 7: Connect Example
	Slide 8: How do we error check read() and write()?
	Slide 9: Step 4: read()
	Slide 10: Step 4: write()
	Slide 11: Read/Write Example
	Slide 12: Step 5: close()
	Slide 13: Socket API: Server TCP Connection
	Slide 14: Servers
	Slide 15: Step 1: Figure out IP address(es) & Port
	Slide 16: Step 2: Create a Socket
	Slide 17: Step 3: Bind the socket
	Slide 18: Step 4: Listen for Incoming Clients
	Slide 19: Example #1
	Slide 20: Step 5: Accept a Client Connection
	Slide 21: Example #2
	Slide 22: Something to Note
	Slide 23: Extra Exercise #1

