W UNIVERSITY of WASHINGTON L16: C++Smart Pointers CSE333, Summer 2023

@ PO" EveryWhel‘e pollev.com/cse333

Give a few words/adjectives to describe how
you feel about C++ so far.

(open-ended question)

w UNIVERSITY of WASHINGTON L16: C++Smart Pointers CSE333, Summer 2023

C++ Smart Pointers
CSE 333 Summer 2023

Instructor: Timmy Yang

Teaching Assistants:
Jennifer Xu Leanna Nguyen Pedro Amarante
Sara Deutscher Tanmay Shah

w UNIVERSITY of WASHINGTON L16: C++Smart Pointers CSE333, Summer 2023

Relevant Course Information

» Exercise 9 released today, due next Monday (7/31)
= Will make use of what we’re talking about today

» Homework 3 due next Thursday (8/03)

= Usual reminders: don’t forget to tag, then be sure to clone
elsewhere and recompile / retest

» Quiz 2 closes TONIGHT (7/26) @ 11:59pm
= See Quiz Policies page

" https://courses.cs.washington.edu/courses/cse333/23su/quizzes/

https://courses.cs.washington.edu/courses/cse333/23su/quizzes/

YA UNIVERSITY of WASHINGTON

L16: C++ Smart Pointers

CSE333, Summer 2023

Lecture Outline

<+ Smart Pointers Intro

% Introducing STL Smart Pointers
" std::shared ptr
" std::unique ptr

+» Smart Pointer Limitations
" std::weak ptr

w UNIVERSITY of WASHINGTON L16: C++Smart Pointers CSE333, Summer 2023

Motivation

+ We noticed that STL was doing an enormous amount of
copying

= And it doesn’t always work properly with inheritance...

+ A solution: store pointers in containers instead of objects

= But who's responsible for deleting and when???

w UNIVERSITY of WASHINGTON L16: C++Smart Pointers CSE333, Summer 2023

C++ Smart Pointers

+» A smart pointer is an object that stores a pointer to a
heap-allocated object

= A smart pointer looks and behaves like a regular C++ pointer
- By overloading *, -=>, [], etc.

B

" These can help you manage memory

- The smart pointer will delete the pointed-to object at the right time
including invoking the object’s destructor

— When that is depends on what kind of smart pointer you use

- With correct use of smart pointers, you no longer have to remember
when to delete new'd memory!

w UNIVERSITY of WASHINGTON L16: C++Smart Pointers CSE333, Summer 2023

A Toy Smart Pointer

+» We can implement a simple one with:
= A constructor that accepts a pointer

= A destructor that deletes the pointer

" Qverloaded * and —> operators that access the pointer
cand 79

ow LD o WA

w UNIVERSITY of WASHINGTON L16: C++Smart Pointers CSE333, Summer 2023

ToyPtr Class Template

ToyPtr.cc
(#ifndef TOYPTR H)
#define TOYPTR H
template <typename T> class ToyPtr {
public:
ToyPtr (T* ptr) : ptr (ptr) { } // constructor
~ToyPtr () { delete ptr ; } // destructor A’dwﬂ wp
\[' Or\\\/ A O\rf)umen‘l' (-h«;;) + é\]‘«uer\’hﬁ"e -ﬁm “’\V\\-i.lp‘-’td\-bﬂ
T& operator* () { return *ptr ; } // * operator
T* operator->() { return ptr ; } // -> operator
private:
T* ptr ; /VP;A3ﬁb5m¢ﬂ%5p\H¢r / the pointer itself
}i
px & @e)-x
ftendif // TOYPTR H_

w UNIVERSITY of WASHINGTON L16: C++Smart Pointers CSE333, Summer 2023

ToyPtr Example

usetoy.cc

-) p\
#include <iostream>

#include "ToyPtr.h"

// simply struct to use
typedef struct { int x = 1, y = 2; } Point;
std::ostreamé& operator<<(std::ostreamé& out, const Point& rhs) {

return out << " (" << rhs.x << "," << rhs.y << ")";
} >
leale)Z/\\"@ yzl|(D
int main(int argc, char** argv) { Mor
// Create a raw ('"not smart'") pointer l —
' - + AR\ ©
Point* leak = new Paoint; ne u*-P { 7“}4YE9

// Create a "smart" pointer (OK, it's still pretty dumb)
ToyPtr<Point> notleak (new ngﬁt);
2

std::cout << " *leak: " << *leak << std::endl; /VCLU
std::cout << " leak->x: " << leak->x << std::endl; /A
std::cout << " “Fnotleak: " << *notleak << std::endl; /VCLL)
std::cout << "notleak->x: " << notleak->x << std::endl; A’l

return EXIT_SUCCESS;

w UNIVERSITY of WASHINGTON L16: C++Smart Pointers CSE333, Summer 2023

What Makes This a Toy?

+» Can’t handle:
" Arrays
= Copying (broke the Rule of Three!)
= Reassignment (broke the Rule of Three!)
" Comparison

= .. plus many other subtleties...

» Luckily, others have built non-toy smart pointers for us!
= Let’s take a look...

10

YA UNIVERSITY of WASHINGTON

L16: C++ Smart Pointers

CSE333, Summer 2023

Lecture Outline

+» Smart Pointers Intro

+ Introducing STL Smart Pointers
" std::unique ptr
" std::shared ptr

<« Smart Pointer Limitations
2 std::weak_ptr

11

YW UNIVERSITY of WASHINGTON

L16: C++ Smart Pointers

CSE333, Summer 2023

Goals for Smart Pointers

+ Should automatically handle dynamically-allocated

memory to decrease programming overhead of managing
memory

"= Don’t have to explicitly call delete or delete]

= Memory will deallocate when no longer in use — ties the lifetime
of the data to the smart pointer object

% Should work similarly to using a normal/“raw” pointer

= Expected/usual behavior using —>, *, and [] operators

= Only declaration/construction should be different

12

w UNIVERSITY of WASHINGTON L16: C++Smart Pointers CSE333, Summer 2023

ToyPtr Class Issue

toyuse.cc

#include "ToyPtr.h"

// We want two pointers!

int main(int argc, char** argv) {
ToyPtr<int> x(new int(5));
ToyPtr<int> y(x);
return EXIT SUCCESS;

}

>/Z/ /\ double delete /\

Brainstorm ways to design around this.

DO

13

w UNIVERSITY of WASHINGTON L16: C++Smart Pointers CSE333, Summer 2023

Smart Pointers Solutions

+» Option 1: Unique Ownership of Memory
" unique ptr

= Disable copying (cctor, op=) to prevent sharing

+ Option 2: Reference Counting
" shared ptr (andweak ptr)

" Track the number of references to an “owned” piece of data and
only deallocate when no smart pointers are managing that data

14

w UNIVERSITY of WASHINGTON L16: C++Smart Pointers CSE333, Summer 2023

Option 1: Unique Ownership

+ Aunique ptr isthe sole owner of a pointer to memory

" https://cplusplus.com/reference/memory/unique ptr/

" Enforces uniqueness by disabling copy and assignment
(compiler error if these methods are used)

- Will therefore always call de1ete onthe managed pointer when
destructed

" Asthe sole owner,a unique ptr can choose to transfer or
release ownership of a pointer

15

https://cplusplus.com/reference/memory/unique_ptr/

w UNIVERSITY of WASHINGTON L16: C++Smart Pointers CSE333, Summer 2023

unigue ptrs Cannot Be Copied

+ std::unique ptr hasdisabled its copy constructor

and assignment operator

" You cannot copy a unique ptr, helping maintain “uniqueness”

or “ownership”
uniquefail.cc

[#include <memory> // for std::unique ptr)

#include <cstdlib> // for EXIT SUCCESS

int main (int argc, char** argv) {

std::unique ptr<int> x(new int(5)); // l-argctor (pointer) v
std::unique ptr<int> y(x); // cctor disabled; compiler error %
std::unique ptr<int> z; // default ctor, holds nullptr 4
Z = X; // op= disabled; compiler error x

return EXIT SUCCESS;

16

w UNIVERSITY of WASHINGTON L16: C++Smart Pointers CSE333, Summer 2023

unique ptrsandSTL

+ unique ptrscan also be stored in STL containers!

= Contradiction? STL containers make copies of stored objects and
unique ptrs cannot be copied...

+ Recall: why do container operations/methods create extra
copies?
" Generally to move things around in memory/the data structure

" The end result is still one copy of each element — this doesn’t
break the sole ownership notion!

17

w UNIVERSITY of WASHINGTON L16: C++Smart Pointers CSE333, Summer 2023

Passing Ownership

+ As the “owner” of a pointer, unique ptrsshould
be able to remove or transfer its ownership

= release () and reset () free ownership

uniquepass.cc

rint main (int argc, char** argv) {]

G)unique_ptr<int> x (new int (5)); X[;}”1%___1> [:Z
<KL *x <L endl; A

cout << "x:

// Releases ownership and returns a raw point

unique ptr<int> y(x.release()); // x givegowneyShip to y
cout << "y: " << *y << endl; j ,
unique ptr<int> z(new int(10)); X\

// v gives ownership to z
// z’s reset () deallocates "10" and stores y’s pointer
z.reset(y.release());

return EXIT SUCCESS;

}

\ S

18

w UNIVERSITY of WASHINGTON L16: C++Smart Pointers CSE333, Summer 2023

unique ptr and STL Example

+ STL’s supports transfer ownership of unique ptrs

using move semantics
uniquevec.cc

N\

rint main (int argc, char** argv) {
std::vector<std::unique ptr<int> > vec;

vec.push back (std::unique ptr<int>(new int(9)));
vec.push back (std::unique ptr<int>(new int(5)));
vec.push back (std::unique ptr<int>(new int(7)));

// z holds 5

int z = *vecl[1l];

std::cout << "z i1s: " <K< z << std::endl; vec \ \ .
N\

// compiler error! 2 -

std::unique ptr<int> copied(vec[l]); 7

s com gp W/ sidl: > wove ()
return EXIT SUCCESS; 4 ptsthe GO, bt leaves

| vee D) == nl|pt

19

unigue ptr and Move Semantics

+ “Move semantics” (as compared to “Copy semantics”)

move values from one object to another without copying

" https://cplusplus.com/doc/tutorial/classes2/#move

= Useful for optimizing away temporary copies

= STL's use move semantics to transfer ownership of

unique ptrsinstead of copying niquemove.cc
- uniqu ve.

... (includes and other examples) ﬁ*’\

int main(int argc, char** argv) { 61(:J \\i>1(euﬂ‘
std::unique ptr<string> a(new string("Hello")); l*
// moves a to b V[E’—)

$td::unique ptr<string> b = std::move(a);
// a 1s now nullptr (default ctor of unique ptr)
std::cout << "b: " << *b << std::endl; // "Hello"

return EXIT SUCCESS;

w UNIVERSITY of WASHINGTON L16: C++Smart Pointers CSE333, Summer 2023

o~

20

https://cplusplus.com/doc/tutorial/classes2/#move

w UNIVERSITY of WASHINGTON L16: C++Smart Pointers CSE333, Summer 2023

Option 2: Reference Counting

%+ shared ptr implements reference counting

" https://cplusplus.com/reference/memory/shared ptr/

" Counts the number of references to a piece of heap-allocated
data and only deallocates it when the reference count reaches 0

- This means that it is no longer being used and its lifetime has come to
an end

" Managed abstractly through sharing a resource counter:
- Constructors will create the counter
- Copy constructor and operator= will increment the counter
- Destructor will decrement the counter

21

https://cplusplus.com/reference/memory/shared_ptr/

W UNIVERSITY of WASHINGTON L16: C++Smart Pointers CSE333, Summer 2023

Now using shared ptr

shareduse.cc

#include <memory> // for std::shared ptr
#include <cstdlib> // for EXIT SUCCESS

// We want two pointers!

int main (int argc, char** argv) {
std::shared ptr<int> x(new int(5)); // creates ref count
*x += 3; // usage 1is the same
std: :shared ptr<int> y(x); // increments ref count
return EXIT SUCCESS;

/
x |4 |
/ \ & No error &

//' no leak! &
Y E— ref count:/{/[/{ 0

22

w UNIVERSITY of WASHINGTON L16: C++Smart Pointers CSE333, Summer 2023

shared ptrsand STL Containers

+ Use shared ptrsinside STL Containers
= Avoid extra object copies

= Safe to do, since copy/assign maintain a shared reference count

- Copying increments ref count, then original is destructed
sharedvec.cc

vector<std::shared ptr<int> > vec;

vec.push back (std::shared ptr<int>(new int (9))):;
vec.push back (std::shared ptr<int>(new int (5))); :3
vec.push back (std::shared ptr<int>(new int (7))); \[;7£A \

int& z = *vec[l]; %6(&
5/

std::cout << "z 1s: " << z << std::endl;

std::shared ptr<int> copied(vec[l]); // works!

std::cout << "*copied: " << *copied << std::endl; &J
Cople

vec.pop back(); // removes smart ptr & deallocates 7!

23

CSE333, Summer 2023

YW UNIVERSITY of WASHINGTON L16: C++ Smart Pointers

Practice with Reference Counts

+» What is the expected output of this program?
" use count () —returns reference count

" unique () —returns ref count ==1 (bool)
sharedrefcount.cc

[... // the necessary includes are here @\
X @
—a
o)

int main(int argc, char** argv) {
std::shared ptr<int> x(new int (10)); -
std::cout << x.use _count () << std::endl; //1_ _

// temporary inner scope (!)

{
std: :shared ptr<int> y(x);
std::cout << y.use count() << std::endl; //2_

b)y s destuded he!

std::cout << x.use count() << std::endl; 41
std::cout << x.unique () << std::endl; ./ +rue

return EXIT SUCCESS; //X is destruded here CS,O (s deaned uP)

D

Aside: Smart Pointers and Arrays

+» Smart pointers can store arrays as well and will call
delete[] on destruction

uniquearray.cc

#finclude <memory> // for std::unique ptr
#include <cstdlib> // for EXIT SUCCESS

using std::unique ptr; %:Kii{;?

int main(int argc, char **argv) {
unique ptr<int[]> x(new int[5]); \ Zf
x[0] =1
x[2] = 2

return EXIT SUCCESS; Cm\lg ‘&v CD\N‘M M@kez

.
14

.
14

w UNIVERSITY of WASHINGTON L16: C++Smart Pointers CSE333, Summer 2023

25

w UNIVERSITY of WASHINGTON L16: C++Smart Pointers CSE333, Summer 2023

Choosing Between Smart Pointers

+ unique ptrs make ownership very clear

= Generally the default choice due to reduced complexity — the
owner is responsible for cleaning up the resource

- Example: would make sense in HW1 & HW2, where we specifically
documented who takes ownership of a resource

" |Less overhead: small and efficient

+ shared ptrsallow for multiple simultaneous owners

= Reference counting allows for “smarter” deallocation but
consumes more space and logic and is trickier to get right

®= Common when using more “well-connected” data structures

26

YA UNIVERSITY of WASHINGTON

L16: C++ Smart Pointers

Lecture Outline

<« Smart Pointers Intro

% Introducing STL Smart Pointers
" std::shared ptr
" std::unique ptr

+» Smart Pointer Limitations
" std::weak ptr

CSE333, Summer 2023

27

w UNIVERSITY of WASHINGTON L16: C++Smart Pointers CSE333, Summer 2023

Limitations with Smart Pointers

+ Smart pointers are only as “smart” as the behaviors that

have been built into their class methods and non-member
functions!

>

- Limitations we will look at now:

= Can’t tell if pointer is to the heap or not

L)

L)

= Circumventing ownership rules
= Still possible to leak memory!
= Sorting smart pointers [Bonus slides]

28

W UNIVERSITY of WASHINGTON L16: C++Smart Pointers CSE333, Summer 2023

Using a Non-Heap Pointer

+» Smart pointers will still call de 1 ete when destructed

#include <cstdlib>
#include <memory>

using std::shared ptr;

int main(int argc, char** argv) {
int x = 333;

shared ptr<int> pl (&x);

return EXIT SUCCESS;

}

29

YW UNIVERSITY of WASHINGTON

L16: C++ Smart Pointers

CSE333, Summer 2023

Re-using a Raw Pointer (unique ptr)

+» Smart pointers can’t tell if you are re-using a raw pointer

#include <cstdlib>
#include <memory>

using std::unique ptr;

int main(int argc, char** argv)
int* x = new int(333);

unique ptr<int> pl(x);
unique ptr<int> p2(x);

return EXIT SUCCESS;

}

{

p

N\

JZ-

—

[N

/\ double delete A\

30

YW UNIVERSITY of WASHINGTON

L16: C++ Smart Pointers

CSE333, Summer 2023

Re-using a Raw Pointer (shared ptr)

+» Smart pointers can’t tell if you are re-using a raw pointer

#include <cstdlib>
#include <memory>

return EXIT SUCCESS;

using std::shared ptr;

shared ptr<int> pl(x

shared ptr<int> p2(x

) g

)

int main(int argc, char** argv) {
int* x = new int(333);

p

ref count=1

JZf

KI

i

ref count=1

/\ double delete A\

31

YW UNIVERSITY of WASHINGTON L16: C++ Smart Pointers

CSE333, Summer 2023

Solution: Don’t Use Raw Pointer Variables

L)

+» Smart pointers replace your raw pointers; passing new
and then using the copy constructor is safer:

[#include <cstdlib>
#include <memory>

using std::shared ptr;

int main(int argc, char** argv) {
!' !.t* !E o L/)))\
LI VV L 11 \JJJ[’7

shared ptr<int> pl(new int (333));
shared ptr<int> p2(pl):

return EXIT SUCCESS;
}

32

w UNIVERSITY of WASHINGTON L16: C++Smart Pointers CSE333, Summer 2023

Caution Using get()

+» Smart pointers still have functions to return the raw
pointer without losing its ownership

= get() can circumvent ownership rules!

#include <cstdlib>
#include <memory> 7
01 PS
// Same as re-using a raw pointer
int main(int argc, char** argv) {
A
unique ptr<int> pl(new int (5)); 172’[5::

unique ptr<int> p2(pl.get()):;

return EXIT SUCCESS;

} k “ ke

7 —

33

W UNIVERSITY of WASHINGTON L16: C++Smart Pointers CSE333, Summer 2023

Cycle of shared ptrs

+» What happens when main returns?

#include <cstdlib>
#include <memory>

using std::shared ptr;

struct A { {d_: | V‘C('"\

shared ptr<A> next;
shared ptr<A> prev;

I
| I
I
} ; | |
I
int main(int argc, char** argv) { : , k | i
shared ptr<A> head(new A()); [PreV'Q@ | . | prev | Q|
head->next = shared ptr<A>(new A()); ' : ' :
head->next->prev = head; R 3 S 4

return EXIT SUCCESS;

}

J

sharedcycle.cc
34

w UNIVERSITY of WASHINGTON L16: C++Smart Pointers CSE333, Summer 2023

Solution: weak ptrs

+ weak ptrissimilartoashared ptr butdoesn’t
affect the reference count

" https://cplusplus.com/reference/memory/weak ptr/

= Not really a pointer as it cannot be dereferenced (!) — would
break our notion of shared ownership

- To deference, you first use the 1Lock method to get an associated
shared ptr

35

https://cplusplus.com/reference/memory/weak_ptr/

w UNIVERSITY of WASHINGTON L16: C++Smart Pointers CSE333, Summer 2023

Breaking the Cycle with weak ptr

+» Now what happens when main returns?

é)

#include <cstdlib>
#include <memory>

using std::shared ptr;
using std::weak ptr;

struct A { (el 0 V@L:*/C>
shared ptr<A> next;
weak ptr<A> prev;

¥

l
I]
l :]
l O
I]
int main(int argc, char** argv) { | | t— I
| | PYev ¢ l prev |
]
|)

shared ptr<A> head(new A());
head->next = shared ptr<A>(new A());
head->next->prev = head;

return EXIT SUCCESS;

}

\ S

weakcycle.cc

36

L16: C++ Smart Pointers CSE333, Summer 2023

YW UNIVERSITY of WASHINGTON

Dangling weak ptrs

+ weak ptrsdon’tchange reference count and can

become “dangling”

" Data referenced may have been delete’d
weakrefcount.cc

X 2ZA 0

(includes and other examples)
int main(int argc, char** argv) {
std: :weak ptr<int> w;

{ // temporary inner scope
std::shared ptr<int> y(new int (10));
w = y; // assignment operator of weak ptr takes a shared ptr
std::shared ptr<int> x = w.lock(); // "promoted" shared ptr

fal
std::cout << Jg << T L w.é&ﬁired() << std::endl;

}
std::cout << w.expired() << std::endl;

w.lock (); // rega%ns a nullptr

return EXIT SUCCESS;

}
37

w UNIVERSITY of WASHINGTON L16: C++Smart Pointers CSE333, Summer 2023

Summary of Smart Pointers

+ A shared ptr utilizes reference counting for multiple
owners of an object in memory

= deletesan object once its reference count reaches zero

+ Aweak ptr works with a shared object but doesn’t
affect the reference count

= Can’t actually be dereferenced, but can check if the object still
exists and can get a shared ptr fromthe weak ptrifitdoes

+ Aunique ptr takes ownership of a pointer

= Cannot be copied, but can be moved

38

W UNIVERSITY of WASHINGTON L16: C++Smart Pointers CSE333, Summer 2023

Some Important Smart Pointer Methods

Visit http://www.cplusplus.com/ for more information on these!

+ std::unique ptr<T> U;

"= U.get() Returns the raw pointer U is managing
" U.release () U stops managing its raw pointer and returns the raw pointer

" U.reset (q) U cleans up its raw pointer and takes ownership of g
« std::shared ptr<T> §;

" S.get() Returns the raw pointer S is managing
" S.use count () Returnsthe reference count

" S.unique () Returns true iff S.use_count() ==
+ std::weak ptr<T> W;
" W.lock () Constructs a shared pointer based off of W and returns it

" W.use count () Returnsthe reference count

" W.expired () Returns true iff W is expired (W.use_count() == 0)

39

http://www.cplusplus.com/

W UNIVERSITY of WASHINGTON L16: C++Smart Pointers CSE333, Summer 2023

BONUS SLIDES

Some details about sorting the owned data within a
container of smart pointers.

These slides expand on material covered today but won’t
be needed for CSE333; however, they are relevant for
general C++ smart pointer usage in STL containers.

40

w UNIVERSITY of WASHINGTON L16: C++Smart Pointers CSE333, Summer 2023

Smart Pointers and “<”

+» Smart pointers implement some comparison operators,
including operator<

" However, it doesn’t invoke operator< on the pointed-to
objects; instead, it just promises a stable, strict ordering (probably
based on the pointer address, not the pointed-to-value)

+» Touse the sort () algorithm on a container like
vector, you need to provide a comparison function

.0

+ To use a smart pointer in a sorted container like map,
you need to provide a comparison function when you
declare the container

41

unique ptr and STL Sorting

uniquevecsort.cc

e

bool sortfunction (const unique ptr<int> &x, vaues

const unique ptr<int> &y) { return *x < *y; }
void printfunction (unique ptr<int> &x) { cout << *x << endl; }

int main(int argc, char **argv) {
vector<unique ptr<int> > vec;

vec.push back (unique ptr<int>(new int (9)));
vec.push back (unique ptr<int>(new int(5)));
vec.push back (unique ptr<int>(new int(7)));

// buggy: sorts based on the values of the ptrs
sort(vec.begin(), vec.end()); <
cout << "Sorted:" << endl; g&ﬂm\‘&(SM#

// better: sorts based on the pointed-to values
sort (vec.begin(), vec.end(), é&sortfunction);

cout << "Sorted:" << endl;

for each(vec.begin(), vec.end(), é&printfunction);

return EXIT SUCCESS;

using namespace std; Compare poited=to b

for each(vec.begin(), vec.end(), &printfunction); done Vid move senarst

W UNIVERSITY of WASHINGTON L16: C++Smart Pointers CSE333, Summer 2023

[43

42

w UNIVERSITY of WASHINGTON L16: C++Smart Pointers CSE333, Summer 2023

unique ptr, “<”, and maps

+ Similarly, you can use unique ptrsaskeysinamap
= Reminder: a map internally stores keys in sorted order
- Iterating through the map iterates through the keys in order
= By default, “<” is used to enforce ordering

- You must specify a comparator when constructing the map to get a
meaningful sorted order using “<” of unique ptrs

+ Compare (the 3 template) parameter:

= “A binary predicate that takes two element keys as arguments
and returns abool. This can be a function pointer or a function

object.”
<~ bool fptr(Tl& lhs, T1& Ths); OR member function
> bool operator() (const Tl1& lhs, const Tl& rhs);

43

w UNIVERSITY of WASHINGTON L16: C++Smart Pointers CSE333, Summer 2023

unique ptr and map Example

uniquemap.cc
-
‘{')\ Compares
struct MapComp { | | ;@‘;\ea-hfm\uel
bool operator () (const unique ptr<int> &lhs,
const unique ptr<int> &rhs) const { return *lhs < *rhs; }

b; o/ funchon object

D

int main(int argc, char **argv) {
map<unique ptr<int>, int, MapComp> a map; // Create the map

unique ptr<int> a(new int(5)); // unique ptr for key
unique ptr<int> b(new int(9)); ﬁ”] EP CT/W
unique ptr<int> c(new int (7)) ; &\%% %%%
- 35 2\
a map[std::move(a)] = 25; // move semantics to get ownership
a map[std::move(b)] = 81; // of unique ptrs into the map.
a map[std::move(c)] = 49; // a, b, ¢ hold NULL after this. e
A\
map<unique ptr<int>,int>::iterator it;
for (it = a map.begin(); it != a map.end(); it++)
std::cout << "key: " << *(it->first); 7Tﬂ bﬁ/\ C‘gg
std::cout << " value: " << it->second << sta_—endl 0@\
return EXIT SUCCESS;
- : f\:_ ¥
} otap | [A | 8],

) 44

	Slide 1: Give a few words/adjectives to describe how you feel about C++ so far.
	Slide 2: C++ Smart Pointers CSE 333 Summer 2023
	Slide 3: Relevant Course Information
	Slide 4: Lecture Outline
	Slide 5: Motivation
	Slide 6: C++ Smart Pointers
	Slide 7: A Toy Smart Pointer
	Slide 8: ToyPtr Class Template
	Slide 9: ToyPtr Example
	Slide 10: What Makes This a Toy?
	Slide 11: Lecture Outline
	Slide 12: Goals for Smart Pointers
	Slide 13: ToyPtr Class Issue
	Slide 14: Smart Pointers Solutions
	Slide 15: Option 1: Unique Ownership
	Slide 16: unique_ptrs Cannot Be Copied
	Slide 17: unique_ptrs and STL
	Slide 18: Passing Ownership
	Slide 19: unique_ptr and STL Example
	Slide 20: unique_ptr and Move Semantics
	Slide 21: Option 2: Reference Counting
	Slide 22: Now using shared_ptr
	Slide 23: shared_ptrs and STL Containers
	Slide 24: Practice with Reference Counts
	Slide 25: Aside: Smart Pointers and Arrays
	Slide 26: Choosing Between Smart Pointers
	Slide 27: Lecture Outline
	Slide 28: Limitations with Smart Pointers
	Slide 29: Using a Non-Heap Pointer
	Slide 30: Re-using a Raw Pointer (unique_ptr)
	Slide 31: Re-using a Raw Pointer (shared_ptr)
	Slide 32: Solution: Don’t Use Raw Pointer Variables
	Slide 33: Caution Using get()
	Slide 34: Cycle of shared_ptrs
	Slide 35: Solution: weak_ptrs
	Slide 36: Breaking the Cycle with weak_ptr
	Slide 37: Dangling weak_ptrs
	Slide 38: Summary of Smart Pointers
	Slide 39: Some Important Smart Pointer Methods
	Slide 40
	Slide 41: Smart Pointers and “<”
	Slide 42: unique_ptr and STL Sorting
	Slide 43: unique_ptr, “<”, and maps
	Slide 44: unique_ptr and map Example

