W UNIVERSITY of WASHINGTON L15: C++ Inheritance Il, Casts CSE333, Summer 2023

@ PO" Evel‘yWhel‘e pollev.com/cse333

About how long did Exercise 8 take you?

[2, 4) hours

[4, 6) hours

. [6, 8) hours

8+ Hours

| didn’t submit / | prefer not to say

mmooOw>

W UNIVERSITY of WASHINGTON L15: C++ Inheritance Il, Casts CSE333, Summer 2023

C++ Inheritance I, Casts
CSE 333 Summer 2023

Instructor: Timmy Yang

Teaching Assistants:
Jennifer Xu Leanna Nguyen Pedro Amarante
Sara Deutscher Tanmay Shah

W UNIVERSITY of WASHINGTON L15: C++ Inheritance Il, Casts CSE333, Summer 2023

Relevant Course Information (1/2)

» Homework 3 is due next Thursday (8/03)

= Suggestion: write index files to /tmp/, which is a local scratch
disk and is very fast, but please clean up when you’re done

= Start early!

= Part A is difficult to debug, and some portions of Part B are
challenging!

- See HW3 demo last lecture

- Homework 2 uploaded and submitted to Gradescope

= Please check to make sure you have a submission, and everything
looks correct.

= Make a private Ed post if you spot anything off.

W UNIVERSITY of WASHINGTON L15: C++ Inheritance Il, Casts CSE333, Summer 2023

Relevant Course Information (2/2)

%~ Quiz 2 open today (7/24) @ 2:00pm

Will be administered on Gradescope, closes Wednesday (7/26) @
11:59pm

 Quiz should take ~45 min to complete (we tried to make it shorter).
Please keep all Quiz questions on Ed private

- If anything is frequently asked, we’ll make a separate announcement.
Questions about the Quiz in Office Hours can only be clarification
guestions.

- TAs may ask you to post on the Ed board instead of answering
directly.

Academic Conduct Policy applies to all Quizzes as well
- Please don’t copy other’s work, do not use Chat-GPT
- https://courses.cs.washington.edu/courses/cse333/23su/quizzes/

https://courses.cs.washington.edu/courses/cse333/23su/quizzes/

W UNIVERSITY of WASHINGTON L15: C++ Inheritance Il, Casts CSE333, Summer 2023

4 Weeks Left...

+ If you’re having trouble keeping up with the course...
= Please reach out on Ed

= Shoot me an email

" Fill out a 1-on-1 request
- ASAP! Course staff needs time to organize things.

+» We do not know that you’re struggling if you don’t say
anything!
= Please do not suffer in silence.

+ You belong in this course, and you can succeed.

w UNIVERSITY of WASHINGTON L15: C++ Inheritance Il, Casts CSE333, Summer 2023

Lecture Outline

’0

+» C++ Inheritance
= Static Dispatch
= Constructors and Destructors

" Assignment

C++ Casting

L)

0’0

C++ Conversions

L)

0’0

’0

+ Reference: C++ Primer, Chapter 15

W UNIVERSITY of WASHINGTON L15: C++ Inheritance Il, Casts CSE333, Summer 2023

Reminder: virtual is “sticky”

« IfX::F () is declared virtual, then a vtable will be
created for class X and for all of its subclasses

= The vtables will include function pointers for (the correct) F

« F () will be called using dynamic dispatch even if
overridden in a derived class without the virtual
keyword

" Good style to help the reader and avoid bugs by using override

- Style guide controversy, if you use override should you use
virtual in derived classes? Recent style guides say just use
override, but you’'ll sometimes see both, particularly in older code

CSE333, Summer 2023

YW UNIVERSITY of WASHINGTON L15: C++ Inheritance II, Casts

What happens if we omit “virtual”?

+ By default, without virtual, methods are dispatched

statically
= At compile time, the compiler writes ina call to the address of
the class’ method in the . text segment

- Based on the compile-time visible type of the callee

= This is different than Java

[class Derived : public Base { ... };
» Derived: :Foo ()

int main(int argc, char** argv) {
Derived d;
Derived* dp = &d;
Base* bp = &d;
dp->Foo () ;
bp->Foo () ;
return EXIT SUCCESS;

» Base: :Foo()

w UNIVERSITY of WASHINGTON L15: C++ Inheritance Il, Casts CSE333, Summer 2023

Static Dispatch Example

+» Removed virtual on methods: Stock h

double Stock::GetMarketValue () const;
double Stock::GetProfit() const;

DividendStock dividend() ;
DividendStock* ds = ÷nd;
Stock* s = ÷nd;

// Invokes DividendStock::GetMarketValue ()
ds—->GetMarketValue () ;

// Invokes Stock::GetMarketValue ()
s—->GetMarketValue () ;

// invokes Stock::GetProfit ().
// Stock::GetProfit() invokes Stock::GetMarketValue().
s—->GetProfit () ;

// 1invokes Stock::GetProfit (), since that method 1is inherited.
// Stock::GetProfit() invokes Stock::GetMarketValue().
ds->GetProfit () ;

W UNIVERSITY of WASHINGTON L15: C++ Inheritance Il, Casts CSE333, Summer 2023

Why Not Always Use virtual?

+ Two (fairly uncommon) reasons:
= Efficiency:
- Non-virtual function calls are a tiny bit faster (no indirect lookup)
- A class with no virtual functions has objects without a vptr field

= Control:

« IfF () calls G () inclass Xand G is not virtual, we’re guaranteed to
call X: : G () and not G () in some subclass

— Particularly useful for framework design

+ In Java, all methods are virtual, except static class
methods, which aren’t associated with objects

L0

% In C++ and C#, you can pick what you want
= Omitting virtual can cause obscure bugs

= (Most of the time, you want member function to be virtual)
10

W UNIVERSITY of WASHINGTON L15: C++ Inheritance Il, Casts CSE333, Summer 2023

Mixed Dispatch

+» Which function is called is a mix of both compile time and
runtime decisions as well as how you call the function

= |f called on an object (e.g. ob7j .Fcn ()), usually optimized into a
hard-coded function call at compile time

= |f called via a pointer or reference:
DeclaredT *ptr = new ActualT;

ptr->Fen(); // which version 1is called?

Is Fcn () defined in Y Is DeclaredT: :Fcn () Y Dvnamic dispatch — call most
DeclaredT es marked virtual in es Y . P .
. . derived version of fcn ()
(either locally or DeclaredT orin one of o
: . . visible in ActualT
inherited)? its superclasses?

lNo v No
. Static dispatch — call

2w DeclaredT: :fcn ()

11

YW UNIVERSITY of WASHINGTON

L15: C++ Inheritance I, Casts

Mixed Dispatch Example

mixed.cc

(class A { \
public:
// ml will use static dispatch X
void M1() { cout << "al, "; } @
// m2 will use dynamic dispatch
virtual void M2 () { cout << "a2"; }

¥

class B public A {
public:
void M1 () { cout << "bl, "; }

// m2 is still virtual by default
void M2 () { cout << "b2"; }

¥

\.

CSE333, Summer 2023

4 . - " N\
void main (int argc,
A a: SHEE Sy pi'n':(
B b; er
A* a ptr a = &a;
A* a ptr b = g&b;
B* b_ptr_a = &a;é
B* b_ptr_b = &b;
a ptr a->M1(); // A MZ(\\
a ptr a->M2(); // A
a ptr b->M1(); //A: ‘.M|§2I)
a ptr b>M2(); // B M
b ptr b->M1(); /4/5.,¥4K‘
b ptr b->M2(); //B%% M2(
}
J

12

w UNIVERSITY of WASHINGTON L15: C++ Inheritance Il, Casts CSE333, Summer 2023

Lecture Outline

’0

% C++ Inheritance

= Static Dispatch
= Constructors and Destructors
= Assignment

C++ Casting

L)

0’0

C++ Conversions

L)

0’0

’0

+ Reference: C++ Primer, Chapter 15

13

W UNIVERSITY of WASHINGTON L15: C++ Inheritance Il, Casts CSE333, Summer 2023

Derived-Class Objects

+ A derived object contains “subobjects” corresponding to
the data members inherited from each base class

= No guarantees about how these are laid out in memory (not even
contiguousness between subobjects)

+ Conceptual structure of DividendStock object:

symbol
members inherited total shares
from Stock total cost

current price

members defined by
DividendStock

dividends

14

YW UNIVERSITY of WASHINGTON

L15: C++ Inheritance I, Casts

CSE333, Summer 2023

Constructors and Inheritance

« A derived class does not inherit the base class’
constructor

" The derived class must have its own constructor

= A synthesized default constructor for the derived class first
invokes the default constructor of the base class and then
initialize the derived class” member variables

-K Compiler error if the base class has no default constructor

" The base class constructor is invoked before the constructor of
the derived class

« You can use the initialization list of the derived class to specify which
base class constructor to use

15

W UNIVERSITY of WASHINGTON L15: C++ Inheritance Il, Casts CSE333, Summer 2023

Constructor Examples

badctor.cc goodctor.cc
[class Base { // no default ctor N (// has default ctor)
public: class Base {
Base (int yi) : y(yi) { } public:
int y; int y;
}i I
// Compiler error when you try to // works now
// instantiate a Derl, as the class Derl : public Base {
// synthesized default ctor needs public:
// to invoke_Base's default ctor. int z;
public Base { }s
// still works
class Der2 : public Base {
public:
class Der2 : public Base { Der2 (int zi) : z(zi) { }
public: int z;
Der2 (int yi, int zi) k};)

Base (yi), z(zi) { }
int z;

I

. J

16

W UNIVERSITY of WASHINGTON L15: C++ Inheritance Il, Casts CSE333, Summer 2023

I
o STY.LE
Destructors and Inheritance I
baddtor.cy
«» Destructor of a derived (class Base {)
I . public:
Class: Base () { x = new int; }
- . ~Base () { delete x; }
First runs body of the dtor o stotic A oy
= Then invokes of the dtor ¥ doekes X
Of the base cIass class Derl : public Base {
public:
. . Derl() { y = new int; }
« Static dISpatCh of ~Derl () { delete y; } K
destructors is almost e blpwv &
. | -
always a mistake! T - @’_b
Good habit to always Base* bOptr = new Base;)
define a dtor as virtual Base® blptr = new berl;
) .) delete bOptr; //ok
Empty body if there’s deletc blptrs s/ leas a[
no work to do |
_ J

17

YW UNIVERSITY of WASHINGTON

L15: C++ Inheritance I, Casts

CSE333, Summer 2023

Assignment and Inheritance

+» C++ allows you to assign
the value of a derived
class to an instance of
a base class

= Known as object slicing
 It'slegal sinceb = d
passes type checking rules

- But b doesn’t have space
for any extra fields in d

slicing.cc

(class Base {
public:
Base (1nt x1i)
int x;

b g

class Derl

public:
Derl (int yi)
int y;

I

void Foo ()
Base b (1)
Derl d(2)

// U)va;‘ﬂr
/7YY e

{

d = b;
b = 4d;
}

\.

o x(x1) { }

: public Base {

: Base(16), y(yi) { }

e

N

for . Jied!

18

W UNIVERSITY of WASHINGTON L15: C++ Inheritance Il, Casts CSE333, Summer 2023

STL and Inheritance

+ Recall: STL containers store copies of values

" What happens when we want to store mixes of object types in a
single container? (e.g., Stock and DividendStock)

" You get sliced ®

r#include <list>
#include "Stock.h"
#include "DividendStock.h"

int main(int argc, char** argv) {
Stock s;
DividendStock ds;
list<Stock> 1i;

1i.push back (s) ; // OK
1i.push back(ds); // OUCH!

return EXIT SUCCESS;

19

W UNIVERSITY of WASHINGTON L15: C++ Inheritance Il, Casts CSE333, Summer 2023

STL and Inheritance

+ Instead, store pointers to heap-allocated objects in STL
containers
= No slicing! ©
" sort () doesthe wrong thing ®

" You have to remember to de 1l et e your objects before
destroying the container ®

- Unless you use smart pointers! ?)

T U e W

20

W UNIVERSITY of WASHINGTON L15: C++ Inheritance Il, Casts CSE333, Summer 2023

Lecture Outline

’0

+» C++ Inheritance
= Static Dispatch
= Constructors and Destructors

" Assignment

C++ Casting

L)

0’0

C++ Conversions

L)

0’0

’0

+» Reference: C++ Primer §4.11.3, 19.2.1

21

W UNIVERSITY of WASHINGTON L15: C++ Inheritance Il, Casts CSE333, Summer 2023

Explicit Casting in C

+ Simple syntax: [lhs
+ Used to:

= Convert between pointers of arbitrary type

(new type) rhs;

- Doesn’t change the data, but treats it differently

= Forcibly convert a primitive type to another
- Actually changes the representation

+ You can still use C-style casting in C++, but sometimes the
intent is not clear

" You should not use C-style casting in C++.

22

w UNIVERSITY of WASHINGTON L15: C++ Inheritance Il, Casts CSE333, Summer 2023

;ﬂ]

Casting in C++

"‘v’n

+» C++ provides an alternative casting style that is more
informative:

" statlc cast<to type>(expression)
" dynamic cast<to type>(expression)
" const cast<to type>(expression)

" reinterpret cast<to type>(expression)

+ Always use these in C++ code
" |ntent is clearer

= Easier to find in code via searching

23

W UNIVERSITY of WASHINGTON L15: C++ Inheritance Il, Casts CSE333, Summer 2023

staticcast.cc

statlic cast (class A { ‘
— public:
int x;
+ static cast canconvert: bi
= Pointers to classes of related type SLESE B
public:
- Compiler error if classes are not related float x;
- Dangerous to cast down a class hierarchy bi
= Casting between void* and T* class C : public B {
_ _ public:
= Non-pointer conversion char x;
- e.g., floattoint o
. . volid Foo () {
+ static castlis B b; C c;
checked at compile time // compiler error

A* aptr = static cast<A*>(&b);

dxko\ // OK
<X;D€ﬁ> (B* bptr = static cast<B*>(&c);

// compiles, but dangerous

e
QB C* cptr = static cast<C*>(&b);

24

W UNIVERSITY of WASHINGTON L15: C++ Inheritance Il, Casts CSE333, Summer 2023

dynamiccast.cc

dynamiC_caSt class Base |

public:

virtual void Foo () { }
: float x;

+ dynamic cast canconvert: .

= Pointers to classes of related type

class Derl : public Base {
= References to classes of related type public:
: . char x;

+ dynamic castischeckedatboth |,.

compile time and ond e | \

run time Base b; Derl d;

= Casts between // OK (run-time check passes)

unrelated Classes fa|| Base* bptr = dynamic_cast<Base*> (&d) ;

t (bptr != llptr);
at compile time “iseasis (lopier nullptr)

® Casts from base to G(L\\Q& y // OK (run-time check passes)
wg(‘o Derl* dptr = dynamic cast<Derl*> (bptr);
derived fail at run al

)) i assert (dptr != nullptr);
time if the pointed- to

%gi

object is not the // Run-time check fails, returns nullptr
derived t bptr = &b;
erived type dptr = dynamic cast<Derl*> (bptr);
assert (dptr != nullptr);

YW UNIVERSITY of WASHINGTON L15: C++ Inheritance II, Casts

const_cast

+ const cast adds or strips const-ness

= Dangerous (!)

rvoid Foo (int* x) {
*x++;
}

vold Bar (const int* x)
Foo (x) ;

}

int main(int argc,
int x = 7;
Bar (&x) ;

return EXIT SUCCESS;

Foo (const cast<int*>(x

{

// compiler error
// succeeds

)) ;

char** argv) {

CSE333, Summer 2023

26

YW UNIVERSITY of WASHINGTON L15: C++ Inheritance II, Casts

reinterpret cast

+ reinterpret cast casts betweenincompatible types

= |Low-level reinterpretation of the bit pattern
" e.g., storing a pointer in an 1nt, or vice-versa
- Works as long as the integral type is “wide” enough
" Converting between incompatible pointers
- Dangerous (!)
« This is used (carefully) in hw3
= Use any other C++ cast if you can!

CSE333, Summer 2023

27

W UNIVERSITY of WASHINGTON L15: C++ Inheritance Il, Casts CSE333, Summer 2023

]

wn
~
=
m

Casting Style Considerations

=

-<‘-U =

+» From the “Casting” and “Run-Time Type Information
(RTTI)” sections of the Google C++ Style Guide:
= When the logic of a program guarantees that a given instance of a

base class is, in fact, an instance of a particular derived class, then
a dynamic cast may be used freely on the object.

« Usuallyone canusea static cast asan alternative in such
situations

" Onlyuse reinterpret cast if you know what you are doing
and you understand the aliasing issues

- For unsafe conversions of pointer types to and from integer and other
pointer types, including void*

28

W UNIVERSITY of WASHINGTON L15: C++ Inheritance Il, Casts CSE333, Summer 2023

Lecture Outline

’0

+» C++ Inheritance
= Static Dispatch
= Constructors and Destructors

" Assignment

C++ Casting

L)

0’0

C++ Conversions

L)

0’0

’0

+» Reference: C++ Primer §4.11.3, 19.2.1

29

W UNIVERSITY of WASHINGTON L15: C++ Inheritance Il, Casts CSE333, Summer 2023

Implicit Conversion

+» The compiler tries to infer some kinds of conversions

" When types are not equal and you don’t specify an explicit cast,
the compiler looks for an acceptable implicit conversion

[void Bar (std::string x);

void Foo () {
int x = 5.7; // conversion, float -> 1int
char ¢ = x; // conversion, 1nt -> char
Bar ("hi"); // conversion, (const char*) -> string

}

\ J

30

L15: C++ Inheritance I, Casts CSE333, Summer 2023

YW UNIVERSITY of WASHINGTON

Sneaky Implicit Conversions

%+ (const char*)to string conversion?

" |f a class has a constructor with a single parameter, the compiler
will exploit it to perform implicit conversions

= At most, one user-defined implicit conversion will happen
- Cando int —» Foo, butnot int - Foo - Baz

class Foo {

public:
Foo(int xi)
int x;

b g

o ox(x1i) { }

int Bar (Foo f) {
return f.x;

}

int main(int argc,
return Bar (5);

}

char** argv) {
// equivalent to return Bar (Foo(5));

31

W UNIVERSITY of WASHINGTON L15: C++ Inheritance Il, Casts CSE333, Summer 2023

]

é+i§
s
A

—
-<‘-U’"

Avoiding Sneaky Implicits

+ Declare one-argument constructors as explicit if you
want to disable them from being used as an implicit
conversion path

= Usually a good idea

rclass Foo {

public:
explicit Foo(int xi) : x(x1i) { 1}
int x;

b g

int Bar (Foo f) {
return f.x;

}

int main(int argc, char** argv) {
return Bar(5); // compiler error

}

\ y 32

YW UNIVERSITY of WASHINGTON L15: C++ Inheritance II, Casts

Extra Exercise #1

\/
0’0

o0

Design a class hierarchy to represent shapes
= e.g., Circle, Triangle, Square

Implement methods that:

Construct shapes

Move a shape (i.e., add (x,y) to the shape position)
Returns the centroid of the shape

Returns the area of the shape

Print (), which prints out the details of a shape

CSE333, Summer 2023

33

W UNIVERSITY of WASHINGTON L15: C++ Inheritance Il, Casts CSE333, Summer 2023

Extra Exercise #2

+ Implement a program that uses Extra Exercise #1 (shapes
class hierarchy):

" Constructs a vector of shapes
= Sorts the vector according to the area of the shape
" Prints out each member of the vector

«» Notes:
= Avoid slicing!
= Make sure the sorting works properly!

34

	Slide 1: About how long did Exercise 8 take you?
	Slide 2: C++ Inheritance II, Casts CSE 333 Summer 2023
	Slide 3: Relevant Course Information (1/2)
	Slide 4: Relevant Course Information (2/2)
	Slide 5: 4 Weeks Left…
	Slide 6: Lecture Outline
	Slide 7: Reminder: virtual is “sticky”
	Slide 8: What happens if we omit “virtual”?
	Slide 9: Static Dispatch Example
	Slide 10: Why Not Always Use virtual?
	Slide 11: Mixed Dispatch
	Slide 12: Mixed Dispatch Example
	Slide 13: Lecture Outline
	Slide 14: Derived-Class Objects
	Slide 15: Constructors and Inheritance
	Slide 16: Constructor Examples
	Slide 17: Destructors and Inheritance
	Slide 18: Assignment and Inheritance
	Slide 19: STL and Inheritance
	Slide 20: STL and Inheritance
	Slide 21: Lecture Outline
	Slide 22: Explicit Casting in C
	Slide 23: Casting in C++
	Slide 24: static_cast
	Slide 25: dynamic_cast
	Slide 26: const_cast
	Slide 27: reinterpret_cast
	Slide 28: Casting Style Considerations
	Slide 29: Lecture Outline
	Slide 30: Implicit Conversion
	Slide 31: Sneaky Implicit Conversions
	Slide 32: Avoiding Sneaky Implicits
	Slide 33: Extra Exercise #1
	Slide 34: Extra Exercise #2

