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About how long did Exercise 8 take you?

[2, 4) hours

[4, 6) hours

. [6, 8) hours

8+ Hours

| didn’t submit / | prefer not to say
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Relevant Course Information (1/2)

» Homework 3 is due next Thursday (8/03)

= Suggestion: write index files to /tmp/, which is a local scratch
disk and is very fast, but please clean up when you’re done

= Start early!

= Part A is difficult to debug, and some portions of Part B are
challenging!

- See HW3 demo last lecture

- Homework 2 uploaded and submitted to Gradescope

= Please check to make sure you have a submission, and everything
looks correct.

= Make a private Ed post if you spot anything off.
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Relevant Course Information (2/2)

%~ Quiz 2 open today (7/24) @ 2:00pm

Will be administered on Gradescope, closes Wednesday (7/26) @
11:59pm

 Quiz should take ~45 min to complete (we tried to make it shorter).
Please keep all Quiz questions on Ed private

- If anything is frequently asked, we’ll make a separate announcement.
Questions about the Quiz in Office Hours can only be clarification
guestions.

- TAs may ask you to post on the Ed board instead of answering
directly.

Academic Conduct Policy applies to all Quizzes as well
- Please don’t copy other’s work, do not use Chat-GPT
- https://courses.cs.washington.edu/courses/cse333/23su/quizzes/
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4 Weeks Left...

+ If you’re having trouble keeping up with the course...
= Please reach out on Ed

= Shoot me an email

" Fill out a 1-on-1 request
- ASAP! Course staff needs time to organize things.

+» We do not know that you’re struggling if you don’t say
anything!
= Please do not suffer in silence.

+ You belong in this course, and you can succeed.
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Lecture Outline

’0

+» C++ Inheritance
= Static Dispatch
= Constructors and Destructors

" Assignment

C++ Casting

L)

0’0

C++ Conversions

L)

0’0

’0

+ Reference: C++ Primer, Chapter 15
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Reminder: virtual is “sticky”

« IfX::F () is declared virtual, then a vtable will be
created for class X and for all of its subclasses

= The vtables will include function pointers for (the correct) F

« F () will be called using dynamic dispatch even if
overridden in a derived class without the virtual
keyword

" Good style to help the reader and avoid bugs by using override

- Style guide controversy, if you use override should you use
virtual in derived classes? Recent style guides say just use
override, but you’'ll sometimes see both, particularly in older code
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What happens if we omit “virtual”?

+ By default, without virtual, methods are dispatched

statically
= At compile time, the compiler writes ina call to the address of
the class’ method in the . text segment

- Based on the compile-time visible type of the callee

= This is different than Java

[ class Derived : public Base { ... };
» Derived: :Foo ()

int main(int argc, char** argv) {
Derived d;
Derived* dp = &d;
Base* bp = &d;
dp->Foo () ;
bp->Foo () ;
return EXIT SUCCESS;

» Base: :Foo()
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Static Dispatch Example

+» Removed virtual on methods: Stock h

double Stock::GetMarketValue () const;
double Stock::GetProfit() const;

DividendStock dividend() ;
DividendStock* ds = &dividend;
Stock* s = &dividend;

// Invokes DividendStock::GetMarketValue ()
ds—->GetMarketValue () ;

// Invokes Stock::GetMarketValue ()
s—->GetMarketValue () ;

// invokes Stock::GetProfit ().
// Stock::GetProfit() invokes Stock::GetMarketValue().
s—->GetProfit () ;

// 1invokes Stock::GetProfit (), since that method 1is inherited.
// Stock::GetProfit() invokes Stock::GetMarketValue().
ds->GetProfit () ;
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Why Not Always Use virtual?

+ Two (fairly uncommon) reasons:
= Efficiency:
- Non-virtual function calls are a tiny bit faster (no indirect lookup)
- A class with no virtual functions has objects without a vptr field

= Control:

« IfF () calls G () inclass Xand G is not virtual, we’re guaranteed to
call X: : G () and not G () in some subclass

— Particularly useful for framework design

+ In Java, all methods are virtual, except static class
methods, which aren’t associated with objects

L0

% In C++ and C#, you can pick what you want
= Omitting virtual can cause obscure bugs

= (Most of the time, you want member function to be virtual)
10
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Mixed Dispatch

+» Which function is called is a mix of both compile time and
runtime decisions as well as how you call the function

= |f called on an object (e.g. ob7j .Fcn () ), usually optimized into a
hard-coded function call at compile time

= |f called via a pointer or reference:
DeclaredT *ptr = new ActualT;

ptr->Fen(); // which version 1is called?

Is Fcn () defined in Y Is DeclaredT: :Fcn () Y Dvnamic dispatch — call most
DeclaredT es marked virtual in es Y . P .
. . derived version of fcn ()
(either locally or DeclaredT orin one of o
: . . visible in ActualT
inherited)? its superclasses?

lNo v No
. Static dispatch — call

2w DeclaredT: :fcn ()

11
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Mixed Dispatch Example

mixed.cc

(class A { \
public:
// ml will use static dispatch X
void M1() { cout << "al, "; } @
// m2 will use dynamic dispatch
virtual void M2 () { cout << "a2"; }

¥

class B public A {
public:
void M1 () { cout << "bl, "; }

// m2 is still virtual by default
void M2 () { cout << "b2"; }

¥

\.

CSE333, Summer 2023

4 . - " N\
void main (int argc,
A a: SHEE Sy pi'n':(
B b; er
A* a ptr a = &a;
A* a ptr b = g&b;
B* b_ptr_a = &a;é
B* b_ptr_b = &b;
a ptr a->M1(); // A MZ(\\
a ptr a->M2(); // A
a ptr b->M1(); //A: ‘.M|§2I)
a ptr b>M2(); // B M
b ptr b->M1(); /4/5.,¥4K‘
b ptr b->M2(); //B%% M2(
}
J

12
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Lecture Outline

’0

% C++ Inheritance

= Static Dispatch
= Constructors and Destructors
= Assignment

C++ Casting

L)

0’0

C++ Conversions

L)

0’0

’0

+ Reference: C++ Primer, Chapter 15

13
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Derived-Class Objects

+ A derived object contains “subobjects” corresponding to
the data members inherited from each base class

= No guarantees about how these are laid out in memory (not even
contiguousness between subobjects)

+ Conceptual structure of DividendStock object:

symbol
members inherited total shares
from Stock total cost

current price

members defined by
DividendStock

dividends

14
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Constructors and Inheritance

« A derived class does not inherit the base class’
constructor

" The derived class must have its own constructor

= A synthesized default constructor for the derived class first
invokes the default constructor of the base class and then
initialize the derived class” member variables

-K Compiler error if the base class has no default constructor

" The base class constructor is invoked before the constructor of
the derived class

« You can use the initialization list of the derived class to specify which
base class constructor to use

15
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Constructor Examples

badctor.cc goodctor.cc
[ class Base { // no default ctor N (// has default ctor )
public: class Base {
Base (int yi) : y(yi) { } public:
int y; int y;
}i I
// Compiler error when you try to // works now
// instantiate a Derl, as the class Derl : public Base {
// synthesized default ctor needs public:
// to invoke_Base's default ctor. int z;
public Base { }s
// still works
class Der2 : public Base {
public:
class Der2 : public Base { Der2 (int zi) : z(zi) { }
public: int z;
Der2 (int yi, int zi) k}; )

Base (yi), z(zi) { }
int z;

I

. J

16
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I
o STY.LE
Destructors and Inheritance I
baddtor.cy
«» Destructor of a derived (class Base { )
I . public:
Class: Base () { x = new int; }
- . ~Base () { delete x; }
First runs body of the dtor o stotic A oy
= Then invokes of the dtor ¥ doekes X
Of the base cIass class Derl : public Base {
public:
. . Derl() { y = new int; }
« Static dISpatCh of ~Derl () { delete y; } K
destructors is almost e blpwv &
. | -
always a mistake! T - @’_b
Good habit to always Base* bOptr = new Base; )
define a dtor as virtual Base® blptr = new berl;
) . ) delete bOptr; //ok
Empty body if there’s deletc blptrs s/ leas a[
no work to do |
\_ J

17
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Assignment and Inheritance

+» C++ allows you to assign
the value of a derived
class to an instance of
a base class

= Known as object slicing
 It'slegal sinceb = d
passes type checking rules

- But b doesn’t have space
for any extra fields in d

slicing.cc

(class Base {
public:
Base (1nt x1i)
int x;

b g

class Derl

public:
Derl (int yi)
int y;

I

void Foo ()
Base b (1)
Derl d(2)

// U)va;‘ﬂr
/7YY e

{

d = b;
b = 4d;
}

\.

o x(x1) { }

: public Base {

: Base(16), y(yi) { }

e

N

for . Jied!

18
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STL and Inheritance

+ Recall: STL containers store copies of values

" What happens when we want to store mixes of object types in a
single container? (e.g., Stock and DividendStock)

" You get sliced ®

r#include <list>
#include "Stock.h"
#include "DividendStock.h"

int main(int argc, char** argv) {
Stock s;
DividendStock ds;
list<Stock> 1i;

1i.push back (s) ; // OK
1i.push back(ds); // OUCH!

return EXIT SUCCESS;

19
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STL and Inheritance

+ Instead, store pointers to heap-allocated objects in STL
containers
= No slicing! ©
" sort () doesthe wrong thing ®

" You have to remember to de 1l et e your objects before
destroying the container ®

- Unless you use smart pointers! ? )

T U e W

20
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Lecture Outline

’0

+» C++ Inheritance
= Static Dispatch
= Constructors and Destructors

" Assignment

C++ Casting

L)

0’0

C++ Conversions

L)

0’0

’0

+» Reference: C++ Primer §4.11.3, 19.2.1

21
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Explicit Casting in C

+ Simple syntax: [ lhs
+ Used to:

= Convert between pointers of arbitrary type

(new type) rhs;

- Doesn’t change the data, but treats it differently

= Forcibly convert a primitive type to another
- Actually changes the representation

+ You can still use C-style casting in C++, but sometimes the
intent is not clear

" You should not use C-style casting in C++.

22
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;ﬂ]

Casting in C++

"‘v’n

+» C++ provides an alternative casting style that is more
informative:

" statlc cast<to type>(expression)
" dynamic cast<to type>(expression)
" const cast<to type>(expression)

" reinterpret cast<to type>(expression)

+ Always use these in C++ code
" |ntent is clearer

= Easier to find in code via searching

23
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staticcast.cc

statlic cast (class A { ‘
— public:
int x;
+ static cast canconvert: bi
= Pointers to classes of related type SLESE B
public:
- Compiler error if classes are not related float x;
- Dangerous to cast down a class hierarchy bi
= Casting between void* and T* class C : public B {
_ _ public:
= Non-pointer conversion char x;
- e.g., floattoint o
. . volid Foo () {
+ static castlis B b; C c;
checked at compile time // compiler error

A* aptr = static cast<A*>(&b);

dxko\ // OK
<X;D€ﬁ> ( B* bptr = static cast<B*>(&c);

// compiles, but dangerous

e
QB C* cptr = static cast<C*>(&b);

24
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dynamiccast.cc

dynamiC_caSt class Base |

public:

virtual void Foo () { }
: float x;

+ dynamic cast canconvert: .

= Pointers to classes of related type

class Derl : public Base {
= References to classes of related type public:
: . char x;

+ dynamic castischeckedatboth |,.

compile time and ond e | \

run time Base b; Derl d;

= Casts between // OK (run-time check passes)

unrelated Classes fa|| Base* bptr = dynamic_cast<Base*> (&d) ;

t (bptr != llptr);
at compile time “iseasis (lopier nullptr)

® Casts from base to G(L\\Q& y // OK (run-time check passes)
wg(‘o Derl* dptr = dynamic cast<Derl*> (bptr);
derived fail at run al

) ) i assert (dptr != nullptr);
time if the pointed- to

%gi

object is not the // Run-time check fails, returns nullptr
derived t bptr = &b;
erived type dptr = dynamic cast<Derl*> (bptr);
assert (dptr != nullptr);
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const_cast

+ const cast adds or strips const-ness

= Dangerous (!)

rvoid Foo (int* x) {
*x++;
}

vold Bar (const int* x)
Foo (x) ;

}

int main(int argc,
int x = 7;
Bar (&x) ;

return EXIT SUCCESS;

Foo (const cast<int*>(x

{

// compiler error
// succeeds

) ) ;

char** argv) {

CSE333, Summer 2023

26
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reinterpret cast

+ reinterpret cast casts betweenincompatible types

= |Low-level reinterpretation of the bit pattern
" e.g., storing a pointer in an 1nt, or vice-versa
- Works as long as the integral type is “wide” enough
" Converting between incompatible pointers
- Dangerous (!)
« This is used (carefully) in hw3
= Use any other C++ cast if you can!

CSE333, Summer 2023

27
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]

wn
~
=
m

Casting Style Considerations

=

-<‘-U =

+» From the “Casting” and “Run-Time Type Information
(RTTI)” sections of the Google C++ Style Guide:
= When the logic of a program guarantees that a given instance of a

base class is, in fact, an instance of a particular derived class, then
a dynamic cast may be used freely on the object.

« Usuallyone canusea static cast asan alternative in such
situations

" Onlyuse reinterpret cast if you know what you are doing
and you understand the aliasing issues

- For unsafe conversions of pointer types to and from integer and other
pointer types, including void*

28
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Lecture Outline

’0

+» C++ Inheritance
= Static Dispatch
= Constructors and Destructors

" Assignment

C++ Casting

L)

0’0

C++ Conversions

L)

0’0

’0

+» Reference: C++ Primer §4.11.3, 19.2.1

29
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Implicit Conversion

+» The compiler tries to infer some kinds of conversions

" When types are not equal and you don’t specify an explicit cast,
the compiler looks for an acceptable implicit conversion

[ void Bar (std::string x);

void Foo () {
int x = 5.7; // conversion, float -> 1int
char ¢ = x; // conversion, 1nt -> char
Bar ("hi"); // conversion, (const char*) -> string

}

\ J

30
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YW UNIVERSITY of WASHINGTON

Sneaky Implicit Conversions

%+ (const char*)to string conversion?

" |f a class has a constructor with a single parameter, the compiler
will exploit it to perform implicit conversions

= At most, one user-defined implicit conversion will happen
- Cando int —» Foo, butnot int - Foo - Baz

class Foo {

public:
Foo(int xi)
int x;

b g

o ox(x1i) { }

int Bar (Foo f) {
return f.x;

}

int main(int argc,
return Bar (5);

}

char** argv) {
// equivalent to return Bar (Foo(5));

31
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]

é+i§
s
A

—
-<‘-U’"

Avoiding Sneaky Implicits

+ Declare one-argument constructors as explicit if you
want to disable them from being used as an implicit
conversion path

= Usually a good idea

rclass Foo {

public:
explicit Foo(int xi) : x(x1i) { 1}
int x;

b g

int Bar (Foo f) {
return f.x;

}

int main(int argc, char** argv) {
return Bar(5); // compiler error

}

\ y 32
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Extra Exercise #1

\/
0’0

o0

Design a class hierarchy to represent shapes
= e.g., Circle, Triangle, Square

Implement methods that:

Construct shapes

Move a shape (i.e., add (x,y) to the shape position)
Returns the centroid of the shape

Returns the area of the shape

Print (), which prints out the details of a shape

CSE333, Summer 2023
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Extra Exercise #2

+ Implement a program that uses Extra Exercise #1 (shapes
class hierarchy):

" Constructs a vector of shapes
= Sorts the vector according to the area of the shape
" Prints out each member of the vector

«» Notes:
= Avoid slicing!
= Make sure the sorting works properly!

34
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