
CSE333, Summer 2023L15: C++ Inheritance II, Casts

1

pollev.com/cse333

About how long did Exercise 8 take you?

A. [0, 2) hours
B. [2, 4) hours
C. [4, 6) hours
D. [6, 8) hours
E. 8+ Hours
F. I didn’t submit / I prefer not to say

CSE333, Summer 2023L15: C++ Inheritance II, Casts

C++ Inheritance II, Casts
CSE 333 Summer 2023

Instructor: Timmy Yang

Teaching Assistants:

Jennifer Xu Leanna Nguyen Pedro Amarante

Sara Deutscher Tanmay Shah

CSE333, Summer 2023L15: C++ Inheritance II, Casts

Relevant Course Information (1/2)

❖ Homework 3 is due next Thursday (8/03)
▪ Suggestion: write index files to /tmp/, which is a local scratch

disk and is very fast, but please clean up when you’re done

▪ Start early!

▪ Part A is difficult to debug, and some portions of Part B are
challenging!

• See HW3 demo last lecture

❖ Homework 2 uploaded and submitted to Gradescope

▪ Please check to make sure you have a submission, and everything
looks correct.

▪ Make a private Ed post if you spot anything off.

3

CSE333, Summer 2023L15: C++ Inheritance II, Casts

Relevant Course Information (2/2)

❖ Quiz 2 open today (7/24) @ 2:00pm

▪ Will be administered on Gradescope, closes Wednesday (7/26) @
11:59pm

• Quiz should take ~45 min to complete (we tried to make it shorter).

▪ Please keep all Quiz questions on Ed private

• If anything is frequently asked, we’ll make a separate announcement.

▪ Questions about the Quiz in Office Hours can only be clarification
questions.

• TAs may ask you to post on the Ed board instead of answering
directly.

▪ Academic Conduct Policy applies to all Quizzes as well

• Please don’t copy other’s work, do not use Chat-GPT

• https://courses.cs.washington.edu/courses/cse333/23su/quizzes/

4

https://courses.cs.washington.edu/courses/cse333/23su/quizzes/

CSE333, Summer 2023L15: C++ Inheritance II, Casts

4 Weeks Left…

❖ If you’re having trouble keeping up with the course…

▪ Please reach out on Ed

▪ Shoot me an email

▪ Fill out a 1-on-1 request

• ASAP! Course staff needs time to organize things.

❖ We do not know that you’re struggling if you don’t say
anything!

▪ Please do not suffer in silence.

❖ You belong in this course, and you can succeed.

5

CSE333, Summer 2023L15: C++ Inheritance II, Casts

Lecture Outline

❖ C++ Inheritance

▪ Static Dispatch

▪ Constructors and Destructors

▪ Assignment

❖ C++ Casting

❖ C++ Conversions

❖ Reference: C++ Primer, Chapter 15

6

CSE333, Summer 2023L15: C++ Inheritance II, Casts

Reminder: virtual is “sticky”

❖ If X::F() is declared virtual, then a vtable will be
created for class X and for all of its subclasses

▪ The vtables will include function pointers for (the correct) F

❖ F() will be called using dynamic dispatch even if
overridden in a derived class without the virtual
keyword
▪ Good style to help the reader and avoid bugs by using override

• Style guide controversy, if you use override should you use
virtual in derived classes? Recent style guides say just use
override, but you’ll sometimes see both, particularly in older code

7

CSE333, Summer 2023L15: C++ Inheritance II, Casts

What happens if we omit “virtual”?

❖ By default, without virtual, methods are dispatched
statically
▪ At compile time, the compiler writes in a call to the address of

the class’ method in the .text segment

• Based on the compile-time visible type of the callee

▪ This is different than Java

8

class Derived : public Base { ... };

int main(int argc, char** argv) {

 Derived d;

 Derived* dp = &d;

 Base* bp = &d;

 dp->Foo();

 bp->Foo();

 return EXIT_SUCCESS;

}

Derived::Foo()

...

Base::Foo()

...

CSE333, Summer 2023L15: C++ Inheritance II, Casts

Static Dispatch Example

❖ Removed virtual on methods:

9

DividendStock dividend();

DividendStock* ds = ÷nd;

Stock* s = ÷nd;

// Invokes DividendStock::GetMarketValue()

ds->GetMarketValue();

// Invokes Stock::GetMarketValue()

s->GetMarketValue();

// invokes Stock::GetProfit().

// Stock::GetProfit() invokes Stock::GetMarketValue().

s->GetProfit();

// invokes Stock::GetProfit(), since that method is inherited.

// Stock::GetProfit() invokes Stock::GetMarketValue().

ds->GetProfit();

double Stock::GetMarketValue() const;

double Stock::GetProfit() const;

Stock.h

CSE333, Summer 2023L15: C++ Inheritance II, Casts

Why Not Always Use virtual?

❖ Two (fairly uncommon) reasons:

▪ Efficiency:

• Non-virtual function calls are a tiny bit faster (no indirect lookup)

• A class with no virtual functions has objects without a vptr field

▪ Control:

• If F() calls G() in class X and G is not virtual, we’re guaranteed to
call X::G() and not G() in some subclass

– Particularly useful for framework design

❖ In Java, all methods are virtual, except static class
methods, which aren’t associated with objects

❖ In C++ and C#, you can pick what you want
▪ Omitting virtual can cause obscure bugs

▪ (Most of the time, you want member function to be virtual)
10

CSE333, Summer 2023L15: C++ Inheritance II, Casts

Mixed Dispatch

❖ Which function is called is a mix of both compile time and
runtime decisions as well as how you call the function
▪ If called on an object (e.g. obj.Fcn()), usually optimized into a

hard-coded function call at compile time

▪ If called via a pointer or reference:
DeclaredT *ptr = new ActualT;

ptr->Fcn(); // which version is called?

11

Static dispatch – call
DeclaredT::fcn()

Is Fcn() defined in
DeclaredT

(either locally or
inherited)?

Is DeclaredT::Fcn()
marked virtual in

DeclaredT or in one of
its superclasses?

Error

Dynamic dispatch – call most-
derived version of fcn()

visible in ActualT

Yes Yes

NoNo

CSE333, Summer 2023L15: C++ Inheritance II, Casts

Mixed Dispatch Example

12

class A {

 public:

 // m1 will use static dispatch

 void M1() { cout << "a1, "; }

 // m2 will use dynamic dispatch

 virtual void M2() { cout << "a2"; }

};

class B : public A {

 public:

 void M1() { cout << "b1, "; }

 // m2 is still virtual by default

 void M2() { cout << "b2"; }

};

void main(int argc,

 char** argv) {

 A a;

 B b;

 A* a_ptr_a = &a;

 A* a_ptr_b = &b;

 B* b_ptr_a = &a;

 B* b_ptr_b = &b;

 a_ptr_a->M1(); //

 a_ptr_a->M2(); //

 a_ptr_b->M1(); //

 a_ptr_b->M2(); //

 b_ptr_b->M1(); //

 b_ptr_b->M2(); //

}

mixed.cc

CSE333, Summer 2023L15: C++ Inheritance II, Casts

Lecture Outline

❖ C++ Inheritance

▪ Static Dispatch

▪ Constructors and Destructors

▪ Assignment

❖ C++ Casting

❖ C++ Conversions

❖ Reference: C++ Primer, Chapter 15

13

CSE333, Summer 2023L15: C++ Inheritance II, Casts

Derived-Class Objects

❖ A derived object contains “subobjects” corresponding to
the data members inherited from each base class

▪ No guarantees about how these are laid out in memory (not even
contiguousness between subobjects)

❖ Conceptual structure of DividendStock object:

14

symbol_

total_shares_

total_cost_

current_price_

dividends_

members inherited
from Stock

members defined by
DividendStock

CSE333, Summer 2023L15: C++ Inheritance II, Casts

Constructors and Inheritance

❖ A derived class does not inherit the base class’
constructor

▪ The derived class must have its own constructor

▪ A synthesized default constructor for the derived class first
invokes the default constructor of the base class and then
initialize the derived class’ member variables

• Compiler error if the base class has no default constructor

▪ The base class constructor is invoked before the constructor of
the derived class

• You can use the initialization list of the derived class to specify which
base class constructor to use

15

CSE333, Summer 2023L15: C++ Inheritance II, Casts

Constructor Examples

16

class Base { // no default ctor

 public:

 Base(int yi) : y(yi) { }

 int y;

};

// Compiler error when you try to

// instantiate a Der1, as the

// synthesized default ctor needs

// to invoke Base's default ctor.

class Der1 : public Base {

 public:

 int z;

};

class Der2 : public Base {

 public:

 Der2(int yi, int zi)

 : Base(yi), z(zi) { }

 int z;

};

badctor.cc

// has default ctor

class Base {

 public:

 int y;

};

// works now

class Der1 : public Base {

 public:

 int z;

};

// still works

class Der2 : public Base {

 public:

 Der2(int zi) : z(zi) { }

 int z;

};

goodctor.cc

CSE333, Summer 2023L15: C++ Inheritance II, Casts

Destructors and Inheritance

❖ Destructor of a derived
class:

▪ First runs body of the dtor

▪ Then invokes of the dtor
of the base class

❖ Static dispatch of
destructors is almost
always a mistake!

▪ Good habit to always
define a dtor as virtual

• Empty body if there’s
no work to do

17

class Base {

 public:

 Base() { x = new int; }

 ~Base() { delete x; }

 int* x;

};

class Der1 : public Base {

 public:

 Der1() { y = new int; }

 ~Der1() { delete y; }

 int* y;

};

void Foo() {

 Base* b0ptr = new Base;

 Base* b1ptr = new Der1;

 delete b0ptr; //

 delete b1ptr; //

}

baddtor.cc

STYLE
TIP

CSE333, Summer 2023L15: C++ Inheritance II, Casts

Assignment and Inheritance

❖ C++ allows you to assign
the value of a derived
class to an instance of
a base class

▪ Known as object slicing

• It’s legal since b = d
passes type checking rules

• But b doesn’t have space
for any extra fields in d

18

class Base {

 public:

 Base(int xi) : x(xi) { }

 int x;

};

class Der1 : public Base {

 public:

 Der1(int yi) : Base(16), y(yi) { }

 int y;

};

void Foo() {

 Base b(1);

 Der1 d(2);

 d = b; //

 b = d; //

}

slicing.cc

CSE333, Summer 2023L15: C++ Inheritance II, Casts

STL and Inheritance

❖ Recall: STL containers store copies of values

▪ What happens when we want to store mixes of object types in a
single container? (e.g., Stock and DividendStock)

▪ You get sliced

19

#include <list>

#include "Stock.h"

#include "DividendStock.h"

int main(int argc, char** argv) {

 Stock s;

 DividendStock ds;

 list<Stock> li;

 li.push_back(s); // OK

 li.push_back(ds); // OUCH!

 return EXIT_SUCCESS;

}

CSE333, Summer 2023L15: C++ Inheritance II, Casts

STL and Inheritance

❖ Instead, store pointers to heap-allocated objects in STL
containers

▪ No slicing! ☺

▪ sort() does the wrong thing

▪ You have to remember to delete your objects before

destroying the container

• Unless you use smart pointers!

20

CSE333, Summer 2023L15: C++ Inheritance II, Casts

Lecture Outline

❖ C++ Inheritance

▪ Static Dispatch

▪ Constructors and Destructors

▪ Assignment

❖ C++ Casting

❖ C++ Conversions

❖ Reference: C++ Primer §4.11.3, 19.2.1

21

CSE333, Summer 2023L15: C++ Inheritance II, Casts

Explicit Casting in C

❖ Simple syntax: lhs = (new_type) rhs;

❖ Used to:

▪ Convert between pointers of arbitrary type

• Doesn’t change the data, but treats it differently

▪ Forcibly convert a primitive type to another

• Actually changes the representation

❖ You can still use C-style casting in C++, but sometimes the
intent is not clear

▪ You should not use C-style casting in C++.

22

lhs = (new_type) rhs;

CSE333, Summer 2023L15: C++ Inheritance II, Casts

Casting in C++

❖ C++ provides an alternative casting style that is more
informative:
▪ static_cast<to_type>(expression)

▪ dynamic_cast<to_type>(expression)

▪ const_cast<to_type>(expression)

▪ reinterpret_cast<to_type>(expression)

❖ Always use these in C++ code

▪ Intent is clearer

▪ Easier to find in code via searching

23

STYLE
TIP

CSE333, Summer 2023L15: C++ Inheritance II, Casts

static_cast

❖ static_cast can convert:

▪ Pointers to classes of related type

• Compiler error if classes are not related

• Dangerous to cast down a class hierarchy

▪ Casting between void* and T*

▪ Non-pointer conversion

• e.g., float to int

❖ static_cast is
checked at compile time

24

class A {

 public:

 int x;

};

class B {

 public:

 float x;

};

class C : public B {

 public:

 char x;

};

void Foo() {

 B b; C c;

 // compiler error

 A* aptr = static_cast<A*>(&b);

 // OK

 B* bptr = static_cast<B*>(&c);

 // compiles, but dangerous

 C* cptr = static_cast<C*>(&b);

}

staticcast.cc

CSE333, Summer 2023L15: C++ Inheritance II, Casts

dynamic_cast

❖ dynamic_cast can convert:

▪ Pointers to classes of related type

▪ References to classes of related type

❖ dynamic_cast is checked at both
compile time and
run time
▪ Casts between

unrelated classes fail
at compile time

▪ Casts from base to
derived fail at run
time if the pointed-to
object is not the
derived type

25

void Bar() {

 Base b; Der1 d;

 // OK (run-time check passes)

 Base* bptr = dynamic_cast<Base*>(&d);

 assert(bptr != nullptr);

 // OK (run-time check passes)

 Der1* dptr = dynamic_cast<Der1*>(bptr);

 assert(dptr != nullptr);

 // Run-time check fails, returns nullptr

 bptr = &b;

 dptr = dynamic_cast<Der1*>(bptr);

 assert(dptr != nullptr);

}

dynamiccast.cc
class Base {

 public:

 virtual void Foo() { }

 float x;

};

class Der1 : public Base {

 public:

 char x;

};

CSE333, Summer 2023L15: C++ Inheritance II, Casts

const_cast

❖ const_cast adds or strips const-ness

▪ Dangerous (!)

26

void Foo(int* x) {

 *x++;

}

void Bar(const int* x) {

 Foo(x); // compiler error

 Foo(const_cast<int*>(x)); // succeeds

}

int main(int argc, char** argv) {

 int x = 7;

 Bar(&x);

 return EXIT_SUCCESS;

}

CSE333, Summer 2023L15: C++ Inheritance II, Casts

reinterpret_cast

❖ reinterpret_cast casts between incompatible types

▪ Low-level reinterpretation of the bit pattern

▪ e.g., storing a pointer in an int, or vice-versa

• Works as long as the integral type is “wide” enough

▪ Converting between incompatible pointers

• Dangerous (!)

• This is used (carefully) in hw3

▪ Use any other C++ cast if you can!

27

CSE333, Summer 2023L15: C++ Inheritance II, Casts

Casting Style Considerations

❖ From the “Casting” and “Run-Time Type Information
(RTTI)” sections of the Google C++ Style Guide:

▪ When the logic of a program guarantees that a given instance of a
base class is, in fact, an instance of a particular derived class, then
a dynamic_cast may be used freely on the object.

• Usually one can use a static_cast as an alternative in such
situations

▪ Only use reinterpret_cast if you know what you are doing
and you understand the aliasing issues

• For unsafe conversions of pointer types to and from integer and other
pointer types, including void*

28

STYLE
TIP

CSE333, Summer 2023L15: C++ Inheritance II, Casts

Lecture Outline

❖ C++ Inheritance

▪ Static Dispatch

▪ Constructors and Destructors

▪ Assignment

❖ C++ Casting

❖ C++ Conversions

❖ Reference: C++ Primer §4.11.3, 19.2.1

29

CSE333, Summer 2023L15: C++ Inheritance II, Casts

Implicit Conversion

❖ The compiler tries to infer some kinds of conversions

▪ When types are not equal and you don’t specify an explicit cast,
the compiler looks for an acceptable implicit conversion

30

void Bar(std::string x);

void Foo() {

 int x = 5.7; // conversion, float -> int

 char c = x; // conversion, int -> char

 Bar("hi"); // conversion, (const char*) -> string

}

CSE333, Summer 2023L15: C++ Inheritance II, Casts

Sneaky Implicit Conversions

❖ (const char*) to string conversion?

▪ If a class has a constructor with a single parameter, the compiler
will exploit it to perform implicit conversions

▪ At most, one user-defined implicit conversion will happen

• Can do int → Foo, but not int → Foo → Baz

31

class Foo {

 public:

 Foo(int xi) : x(xi) { }

 int x;

};

int Bar(Foo f) {

 return f.x;

}

int main(int argc, char** argv) {

 return Bar(5); // equivalent to return Bar(Foo(5));

}

CSE333, Summer 2023L15: C++ Inheritance II, Casts

Avoiding Sneaky Implicits

❖ Declare one-argument constructors as explicit if you
want to disable them from being used as an implicit
conversion path

▪ Usually a good idea

32

class Foo {

 public:

 explicit Foo(int xi) : x(xi) { }

 int x;

};

int Bar(Foo f) {

 return f.x;

}

int main(int argc, char** argv) {

 return Bar(5); // compiler error

}

STYLE
TIP

CSE333, Summer 2023L15: C++ Inheritance II, Casts

Extra Exercise #1

❖ Design a class hierarchy to represent shapes

▪ e.g., Circle, Triangle, Square

❖ Implement methods that:

▪ Construct shapes

▪ Move a shape (i.e., add (x,y) to the shape position)

▪ Returns the centroid of the shape

▪ Returns the area of the shape

▪ Print(), which prints out the details of a shape

33

CSE333, Summer 2023L15: C++ Inheritance II, Casts

Extra Exercise #2

❖ Implement a program that uses Extra Exercise #1 (shapes
class hierarchy):

▪ Constructs a vector of shapes

▪ Sorts the vector according to the area of the shape

▪ Prints out each member of the vector

❖ Notes:

▪ Avoid slicing!

▪ Make sure the sorting works properly!

34

	Slide 1: About how long did Exercise 8 take you?
	Slide 2: C++ Inheritance II, Casts CSE 333 Summer 2023
	Slide 3: Relevant Course Information (1/2)
	Slide 4: Relevant Course Information (2/2)
	Slide 5: 4 Weeks Left…
	Slide 6: Lecture Outline
	Slide 7: Reminder: virtual is “sticky”
	Slide 8: What happens if we omit “virtual”?
	Slide 9: Static Dispatch Example
	Slide 10: Why Not Always Use virtual?
	Slide 11: Mixed Dispatch
	Slide 12: Mixed Dispatch Example
	Slide 13: Lecture Outline
	Slide 14: Derived-Class Objects
	Slide 15: Constructors and Inheritance
	Slide 16: Constructor Examples
	Slide 17: Destructors and Inheritance
	Slide 18: Assignment and Inheritance
	Slide 19: STL and Inheritance
	Slide 20: STL and Inheritance
	Slide 21: Lecture Outline
	Slide 22: Explicit Casting in C
	Slide 23: Casting in C++
	Slide 24: static_cast
	Slide 25: dynamic_cast
	Slide 26: const_cast
	Slide 27: reinterpret_cast
	Slide 28: Casting Style Considerations
	Slide 29: Lecture Outline
	Slide 30: Implicit Conversion
	Slide 31: Sneaky Implicit Conversions
	Slide 32: Avoiding Sneaky Implicits
	Slide 33: Extra Exercise #1
	Slide 34: Extra Exercise #2

