W UNIVERSITY of WASHINGTON L14: C++ Inheritance | CSE333, Summer 2023

@ PO" EveryWhel‘e pollev.com/cse333

Which concept gave you the most difficulty
in the context of Homework 2?

C-string manipulations
POSIX I/O

Dynamic memory allocation
GDB

Style considerations

. Prefer not to say

OmMMmMOO®mP

W UNIVERSITY of WASHINGTON L14: C++ Inheritance | CSE333, Summer 2023

C++ Inheritance |
CSE 333 Summer 2023

Instructor: Timmy Yang

Teaching Assistants:
Jennifer Xu Leanna Nguyen Pedro Amarante
Sara Deutscher Tanmay Shah

W UNIVERSITY of WASHINGTON L14: C++ Inheritance | CSE333, Summer 2023

Relevant Course Information

» Exercise 8 out today, due next Monday (7/24)
- Mid-quarter survey closes tonight (7/21) @ 11:59pm

» Quiz 1 grades out!
= Regrades close Saturday (7/22) @ 11:59pm

- Homework 3 spec out, files pushed to repos tonight
® Due Thursday after next (8/03) @ 11:59pm
= Partner sign-ups close at end of Thursday (7/27)
= Get started early!
= Videos for overview and file debugging demo
= Lecture demo

» Quiz 2 page up, open Monday (7/24) @ 2:00 pm

W UNIVERSITY of WASHINGTON L14: C++ Inheritance | CSE333, Summer 2023

Overview of Next Two Lectures

+ C++ inheritance
= Review of basic idea (pretty much the same as in Java)
= What’s different in C++ (compared to Java)
- Static vs. dynamic dispatch — virtual functions and vtables (optional)

- Pure virtual functions, abstract classes, why no Java “interfaces”
- Assignment slicing, using class hierarchies with STL

® Castsin C++

+ Reference: C++ Primer, Chapter 15

W UNIVERSITY of WASHINGTON L14: C++ Inheritance | CSE333, Summer 2023

Lecture Outline

+» Inheritance motivation & C++ Syntax
» Polymorphism & Dynamic Dispatch
+ Virtual Tables & Virtual Table Pointers

W UNIVERSITY of WASHINGTON L14: C++ Inheritance | CSE333, Summer 2023

Stock Portfolio Example

+~ A portfolio represents a person’s financial investments
" Each asset has a cost (i.e., how much was paid for it) and a market
value (i.e., how much it is worth)

- The difference between the cost and market value is the profit (or
loss)

= Different assets compute market value in different ways

- A stock that you own has a ticker symbol (e.g., “GOOG”), a number of
shares, share price paid, and current share price

- A dividend stock is a stock that also has dividend payments
- Cash is an asset that never incurs a profit or loss

(Credit: thanks to Marty Stepp for this example)

W UNIVERSITY of WASHINGTON L14: C++ Inheritance | CSE333, Summer 2023

Desigh Without Inheritance

One class per asset type:

symbol symbol amount

total shares total shares GetMarketvalue ()

total cost total cost
current price current price T 0@0”40\ wembers

GetMarketValue () dividends_ -
GetProfit () GetMarketValue () .L e e ﬂmthﬂs
GetCost () GetProfit ()
GetCost ()

= Redundant!

= Cannot treat multiple investments together
- e.g., can’t have an array or vector of different assets

MY
b
- See samplecodein initial/ dlrectonW b 4P

W UNIVERSITY of WASHINGTON L14: C++ Inheritance | CSE333, Summer 2023

Inheritance

+ A parent-child “is-a” relationship between classes

= A child (derived class) extends a parent (base class)

ww*«L w\‘l“ Superclass Base Class
o Y on hieariy)
w‘é’u“;ﬁ iﬁw‘urdass Subclass Derived Class

" Mean the same things. You’ll hear both.

W UNIVERSITY of WASHINGTON L14: C++ Inheritance | CSE333, Summer 2023

Inheritance

+ A parent-child “is-a” relationship between classes

= A child (derived class) extends a parent (base class)

+ Benefits:
= Code reuse
« Children can automatically inherit code from parents
= Polymorphism
- Ability to redefine existing behavior but preserve the interface

« Children can override the behavior of the parent

- Others can make calls on objects without knowing which part of the
inheritance tree it is in

= Extensibility

« Children can add behavior

W UNIVERSITY of WASHINGTON L14: C++ Inheritance | CSE333, Summer 2023

Desigh With Inheritance

GetMarketValue ()
GetProfit ()
GetCost ()
symbol _ =
total_ shares__ amount
total cost —
current price GetMarketValue ()
GetMarketValue () DividendStock
GetProfit() symbol
GetCost () total shares

total cost Jﬂhﬁ
|

current price !
dividends_ a— ' oMY
GetMarketValue ()
GetProfit ()

GetCost ()

10

W UNIVERSITY of WASHINGTON L14: C++ Inheritance | CSE333, Summer 2023

Like Java: Access Modifiers

D)

*

o0

L)

o0

o0

public: visible to all other classes

protected: visible to current class and its derived
classes

private: visible only to the current class

Use protected for class members only when

= (Class is designed to be extended by derived classes

= Derived classes must have access but clients should not be
allowed

11

CSE333, Summer 2023

YW UNIVERSITY of WASHINGTON L14: C++ Inheritance |

Class Derivation List

+» Comma-separated list of classes to inherit from:

\

r#include "BaseClass.h"

class Name : public BaseClass {

|} J
" Focus on single inheritance, but multiple inheritance possible
."fuloh‘c, eagel, ?ub\f(.. Base &

+ Almost always you will want public inheritance ;
' : . Lred Basc
= Acts like extends does in Java Vs, protecred Das

= Any member that is non-private in the base class is the same in
the derived class; both interface and implementation inheritance

A% Except that constructors, destructors, copy constructor, and
assignment operator are never inherited

12

YA UNIVERSITY of WASHINGTON

Back to Stocks

symbol
total_shares_
total_cost_

current_price_

GetMarketValue ()
GetProfit ()
GetCost ()

BASE

L14: C++ Inheritance |

DividendStock

symbol
total shares
total cost
current price
dividends

GetMarketValue ()
GetProfit ()
GetCost ()

DERIVED

CSE333, Summer 2023

13

W UNIVERSITY of WASHINGTON L14: C++ Inheritance | CSE333, Summer 2023

Back to Stocks

Stock .
symbol dividends
- symbol _
total_ shares__ total shares
total cost total cost_
i current price .
current price_ —— Zv - _<) . GetProfit ()
etMarketValue L
GetMarketValue () GetProfit () 4: - - GetCost ()
GetProfit () GetCost () 4= PayDividend ()
GetCost ()

+ A derived class:
" |nherits the behavior and state (specification) of the base class
m some of the base class” member functions (opt.)

= Extends the base class with new member functions, variables
(opt.)

14

W UNIVERSITY of WASHINGTON L14: C++ Inheritance | CSE333, Summer 2023

Lecture Outline

» Inheritance motivation & C++ Syntax
+» Polymorphism & Dynamic Dispatch
+ Virtual Tables & Virtual Table Pointers

15

W UNIVERSITY of WASHINGTON L14: C++ Inheritance | CSE333, Summer 2023

Polymorphism in C++

X/

+ InJava: DeclaredType var = new ActualType();

= var is a reference (different term than C++ reference) to an
object of ActualType on the Heap

= ActualType must be the same class or a subclass of
DeclaredType

/7

% In C++: DeclaredType* var p = new ActualType () ;
" var pisa pointerto an object of ActualType on the Heap

" ActualType must be the same or a derived class of
DeclaredType

= (also works with references)

" DeclaredType defines the interface (i.e., what can be called on
var p), but ActualType may determine which version gets
invoked

16

Dynamic Dispatch (like Java)

» Usually, when a derived function is available for an object,

we want the derived function to be invoked

" This requires ecision of what code to invoke

+» A member function invoked on an object should be the

most-derived function accessible to the object’s visible

type

" Can determine what to invoke from @ct itself
»D/'Jl}/&mﬂ%aok-

» Example: D Socke

" void PrintStock (Stock* s) { s—->Print(); }

= Calls the appropriate Print () without knowing the actual type
of *s, other than it is some sort of Stock

W UNIVERSITY of WASHINGTON L14: C++ Inheritance | CSE333, Summer 2023

17

CSE333, Summer 2023

YW UNIVERSITY of WASHINGTON L14: C++ Inheritance |

Dynamic Dispatch Example

+ When a member function is invoked on an object:

" The most-derived function accessible to the object’s visible type is
invoked (decided at run time based on actual type of the object)

rdouble DividendStock: :GetMarketValue () const {
’2Preturn get shares () * get_share;ﬁiice() + dividends ;

}

double "DividendStock": :GetProfit () const { // inherited
return GetMarketValue () - GetCost () ;
} / DividendStock.cc

[double Stock::GetMarketValue () const {
return get shares() * get share price();

}

double Stock::GetProfit () congt ({
return GetMarketValue() - GetCost();
} > Stock.cc s

W UNIVERSITY of WASHINGTON L14: C++ Inheritance | CSE333, Summer 2023

Dynamic Dispatch Example

(#include "Stock.h" ‘ﬁj&ﬂ\r—_-=_———} h
#include "DividendStock.h" /i ‘
DividendStock dividend() ; JSB/ st

DividendStock* ds = ÷nd;
Stock* s = ÷nd; // why 1is this allowed?

// Invokes DividendStock::GetMarketValue () .
ds->GetMarketValue () ;

// Invokes DividendStock::GetMarketValue ()
s—->GetMarketValue () ;

// 1invokes Stock::GetProfit (), since that method is inherited.
// Stock::GetProfit () invokes DividendStock::GetMarketValue(),
// since that 1is the most-derived accessible function.
s—->GetProfit () ;

19

W UNIVERSITY of WASHINGTON L14: C++ Inheritance | CSE333, Summer 2023

Requesting Dynamic Dispatch (C++)

« Prefix the member function declaration with the
virtual keyword

= Derived/child functions don’t need to repeat virtual, but was
traditionally good style to do so

" This is how method calls work in Java (no virtual keyword needed)
" You almost always want functions to be virtual

+» override keyword (C++11)

= Tells compiler this method should be overriding an inherited
virtual function — always use if available

= Prevents overloading vs. overriding bugs

+ Both of these are technically optional in derived classes

= Be consistent and follow local conventions (Google Style Guide

says no virtual if override)
20

YA UNIVERSITY of WASHINGTON

Most-Derived

L14: C++ Inheritance |

CSE333, Summer 2023

(class A {
public:
// Foo will use dynamic dispatch

virtual void Foo();
I 7

class B

public:
// B::Foo overrides A::Foo
virtual void Foo () ;

I

public A {

6

class C public B 1

—Y> C inherits B::Foo()
I

.

v,

J

YY) nes teb G Foo()

(void Bar() f)
A* a ptr;
C c;
a ptr = &c;

// Whose Foo() is called?
a ptr->Foo (

) Eb"F%D())

\ .

<O

>

21

W UNIVERSITY of WASHINGTON L14: C++ Inheritance | CSE333, Summer 2023

@ PO" EveryWhel‘e pollev.com/cse333

7 \nes Tool) AD s a { |
F . ? v, public:
Whose o0 () IS CaIIEd B /// virtual void Foo () ;
I
v,
void Bar () { C class B : public A {
A* a ptr; ‘ public:
C c; / L virtual void Foo () ;
Q]. QZ // Ol: class C : public B {
K a ptr = &c; } i
a ptr->Foo () ; .
% A D — class D : public C {
/) 02 public:
(C.) B B 5 ohr = G virtual void Foo () ;
- . } i
—>Foo () ;
D. B D a ptr->
\}) | class E : public C {
E.

We're lost... };

\ J

22

W UNIVERSITY of WASHINGTON L14: C++ Inheritance | CSE333, Summer 2023

Lecture Outline

» Inheritance motivation & C++ Syntax
» Polymorphism & Dynamic Dispatch
+ Virtual Tables & Virtual Table Pointers

23

W UNIVERSITY of WASHINGTON L14: C++ Inheritance | CSE333, Summer 2023

How Can This Possibly Work?

+» The compiler produces Stock.o from just Stock.cc
" |t doesn’t know that DividendStock exists during this process

= So then how does the emitted code know to call
Stock: :GetMarketValue () or

DividendStock: :GetMarketValue ()
or something else that might not exist yet?

« Function pointers!!!
Stock.h

rvirtual double Stock: :GetMarketValue () const;
virtual double Stock::GetProfit () const;

rdouble Stock: :GetMarketValue () const {
return get shares() * get share price();

}

double Stock::GetProfit () const {
return GetMarketValue () - GetCost () ;

} Stock.cc

24

YW UNIVERSITY of WASHINGTON L14: C++ Inheritance |

CSE333, Summer 2023

vtables and the vptr

+ If a class contains any virtual methods, the compiler
emits:

= A (single) virtual function table (vtable) for the class (| per class)
-« Contains a function pointer for each virtual method in the class

- The pointers in the vtable point to the most-derived function for that
class

= A virtual table pointer (vptr) for each object instance (| per °"5“’D
- A pointer to a virtual table as a “hidden” member variable

- When the object’s constructor is invoked, the vptr is initialized to
point to the vtable for the object’s class

- Thus, the vptr “remembers” what class the object is

25

YW UNIVERSITY of WASHINGTON L14: C++ Inheritance |

351 Throwback: Dynamic Dispatch

Point object

CSE333, Summer 2023

header |vtable ptr jx

Y

olnt vtable:

j ‘code for Point’s samePlace ()
—

3DPoint object

pe=>J)222 \\>
code for Point ()
X

header | vtable % zZ
_——>»| code for sayHi()
3DPoint vtable:]} — |
. code for 3DPoint’s samePlace ()
Java: (3Dt C pseudo-translation:
Bonlinle jor = 2R // works regardless of what p is
return p.samePlace (q) ; return p->vtable[l] (p, 9);

26

W UNIVERSITY of WASHINGTON L14: C++ Inheritance | CSE333, Summer 2023

vtable/vptr Example

(class Base { b fBase b; h
public: Derl dil;
virtual wvoid F1(); Der2 d2;
virtual void F2(); B (D
}; Base* bOptr = &b;
Base* blptr = &dl1;
class Derl : public Base { Base* b2ptr = &d2;
public: wlo ’
virtual void F1 () ; '<7 bOptr->F1(),; // Bﬂée— P L)
}; Va2 C)' bOptr->F2(); // Base -"€20)
class Der2 : public Base { blptr->F1(); // Ver | .'",,k ‘(LQ
public: blptr->F2(); // Base ¥\
T virtual wvoid F2();
CL) | beptr->F1(); /) Bose - (LD
b2ptr->F2(); // Ve ~FL(d
(d2.F10); /7 use . C\()

27

YA UNIVERSITY of WASHINGTON

L14: C++ Inheritance |

vtable/vptr Example

object
instances

vtables

compiled
code

b|vptr @=

Base: :F1()
push Srbp

dl | vptr @=

Base: :F2()
push Srbp

AT

d2 | vptr

Derl::F1()
push S%rbp

Der2::F2()
push Srbp

CSE333, Summer 2023

/S
/S
/S
/S

dz2
//
//

/)

(Base b;
Derl dl;
Der?2 d2;

Base* b2ptr = &d2;

b2ptr->F1 () ;

bZ2ptr -->
d2.vptr —-->

Der?.vtable.Fl —-->
Base:

F1();

cFI()

d2.vptr —-->

Der?2.vtable.Fl —-->

28

YW UNIVERSITY of WASHINGTON

L14: C++ Inheritance |

Let’s Look at Some Actual Code

+ Let’s examine the following code using objdump

" gt++ -Wall
" objdump -CDS vtable > vtable.d

\\| Gf_ R
SO

o
TP

—std=c++17 -0 vtable vtable.cc

vtable.cc

(class Base {

public:
virtual void £1();
virtual void £2 () ;

I

class Derl : public Base {
public:
virtual wvoid f£1();

I

int main(int argc, char** argv) {
Derl dl;
Base* bptr = &dl;
bptr->£1 () ;
dl.£1();

}

~

CSE333, Summer 2023

29

W UNIVERSITY of WASHINGTON L14: C++ Inheritance | CSE333, Summer 2023

Abstract Classes

+~ Sometimes we want to include a function in a class but
only implement it in derived classes
" |n Java, we would use an abstract method
" |n C++, we use a “pure virtual” function
- Example: [virtual string Noise() = O0;

+ A class containing any pure virtual methods is abstract

)(» You can’t create instances of an abstract class
= Extend abstract classes and override methods to use them

+ A class containing only pure virtual methods is the same
as a Java interface

" Pure type specification without implementations

30

	Slide 1: Which concept gave you the most difficulty in the context of Homework 2?
	Slide 2: C++ Inheritance I CSE 333 Summer 2023
	Slide 3: Relevant Course Information
	Slide 4: Overview of Next Two Lectures
	Slide 5: Lecture Outline
	Slide 6: Stock Portfolio Example
	Slide 7: Design Without Inheritance
	Slide 8: Inheritance
	Slide 9: Inheritance
	Slide 10: Design With Inheritance
	Slide 11: Like Java: Access Modifiers
	Slide 12: Class Derivation List
	Slide 13: Back to Stocks
	Slide 14: Back to Stocks
	Slide 15: Lecture Outline
	Slide 16: Polymorphism in C++
	Slide 17: Dynamic Dispatch (like Java)
	Slide 18: Dynamic Dispatch Example
	Slide 19: Dynamic Dispatch Example
	Slide 20: Requesting Dynamic Dispatch (C++)
	Slide 21: Most-Derived
	Slide 22: Whose Foo() is called?
	Slide 23: Lecture Outline
	Slide 24: How Can This Possibly Work?
	Slide 25: vtables and the vptr
	Slide 26: 351 Throwback: Dynamic Dispatch
	Slide 27: vtable/vptr Example
	Slide 28: vtable/vptr Example
	Slide 29: Let’s Look at Some Actual Code
	Slide 30: Abstract Classes

