W UNIVERSITY of WASHINGTON L10: C++ Constructor Insanity CSE333, Summer 2023

@ PO" Evel‘yWhel‘e pollev.com/cse333

About how long did Exercise 5 take you?

"moowR

[2, 4) hours

[4, 6) hours

[6, 8) hours

8+ Hours

| didn’t submit / | prefer not to say

CSE333, Summer 2023

YW UNIVERSITY of WASHINGTON L10: C++ Constructor Insanity

C++ Constructor Insanity
CSE 333 Summer 2023

Instructor: Timmy Yang

Teaching Assistants:
Jennifer Xu Leanna Nguyen
Sara Deutscher Tanmay Shah

Pedro Amarante

w UNIVERSITY of WASHINGTON L10: C++ Constructor Insanity CSE333, Summer 2023

Relevant Course Information

» Exercise 6 released today, next Monday (7/17)

= Write a substantive class in C++ (uses a lot of what we will talk
about in lecture today)

» Homework 2 due next Thursday (7/20)

= File system crawler, indexer, and search engine

" Note: 1ibhwl.a (yours or ours) and the . h files from hwl need
to be in right directory (~yourgit/hwl/)

= Note: use Ctrl-D to exit searchshell

" Tip: test on directory of small self-made files

» Quiz 1 closes at 11:59 pm tonight (7/12)

w UNIVERSITY of WASHINGTON L10: C++ Constructor Insanity CSE333, Summer 2023

[]

'=I‘-._?<|
s
A

—
-<‘-U’"

structvs. class

+ InC,a struct can only contain data fields

"= No methods and all fields are always accessible

% In C++, struct and class are (nearly) the same!

= Both can have methods and member visibility
(public/private/protected)

= Minor difference: members are default publicin a struct and

default privateina class Daten vembers
Aon't eud wl/ ownderscere

IN
+» Common style convention:)
= Use struct for simple bundles of data

= Use class for abstractions with data + functions
(o Datn members 0 end

wf uv.ﬂ?/‘%(—or"

w UNIVERSITY of WASHINGTON L10: C++ Constructor Insanity CSE333, Summer 2023

Memory Diagrams for Objects

+ An object is an instance of a class that maintains its state
independent from other objects
= This state is the collection of its data members

= Conceptually, an object acts like a collection of data fields (plus
class metadata)

- Layout is not specified or guaranteed, unlike structsin C
S{/‘jc’f At
+ Drawn out as variables within variables: o s
(class Point { N
p+ | -] 4-[Z)
private: N —
int x ; // data member
int y ; // data member
\}; // class Point) WMW¢'6£

YW UNIVERSITY of WASHINGTON

Lecture Outline

» Constructors

J/
>

«» Copy Constructors
+ Assignment
« Destructors
+ Extra Details

L10: C++ Constructor Insanity

CSE333, Summer 2023

YW UNIVERSITY of WASHINGTON L10: C++ Constructor Insanity

CSE333, Summer 2023

Constructors

+» A constructor (ctor) initializes a newly-instantiated object
= A class can have multiple constructors that differ in parameters

= A constructor must be invoked when creating a new instance of
an object — which one depends on how the object is instantiated

« Written with the class name as the method name:
Point (const int x, const int vy); S
y oo >

. . ek Cor. JoU .
= C++ will automatically create g’?{/ntheﬂ?ed default constructor if
you have no user-defined constructors 7 €9 ..
(,{Wt'ﬁv(,

- Takes no arguments and calls the default ctor on all non-“plain old i’j?"’
data” (non-POD) member variables

- Synthesized default ctor will fail if you have non-initialized const or
reference data members

W UNIVERSITY of WASHINGTON L10: C++ Constructor Insanity CSE333, Summer 2023

Synthesized Default Constructor Example

[class SimplePoint {

public:
// no constructors declared!
int get x() const { return x ; } // inline member function
int get y() const { return y ; } // inline member function
double Distance (const SimplePointé& p) const;
void SetLocation (int x, int y);

private:
int x ; // data member
int y ; // data member

\}; // class SimplePoint SimpIePoint.h)

D

r#include "SimplePoint.h" SimplePoint cC

// definitions for Distance () and SetLocation ()

int main(int argc, char** argv) {
SimplePoint x; // invokes synthesized default constructor

return EXIT SUCCESS;
— ! 2 2
) x\X»Q 3‘@
e y

\
8

w UNIVERSITY of WASHINGTON L10: C++ Constructor Insanity CSE333, Summer 2023

Synthesized Default Constructor

+ If you define any constructors, C++ assumes you have
defined all the ones you intend to be available and will
not add any others

[#include "SimplePoint.h"

// defining a constructor with two arguments
SimplePoint::SimplePoint (const int x, const int y) {

X = X;
Y = Ys

}

void Foo () {
SimplePoint x; // compiler error: 1if you define any

// ctors, C++ will NOT synthesize a

// default constructor for you.

SimplePoint y (1, 2); // works: 1invokes the 2-int-arguments
— // constructor

Multiple Constructors (overloading)

(#include "SimplePoint.h"

// default constructor
SimplePoint::SimplePoint () {
x = 0;

o = 0

}

// constructor with two arguments
SimplePoint::SimplePoint (const int x, const int y) {
X = X;

Y = Ys

}

void Foo () {
SimplePoint x; // invokes the default constructor
SimplePoint y(1, 2); // invokes the 2-int-arguments ctor
SimplePoint al[3]; // invokes the default ctor 3 times

wldee L7 | 2 1 7)

=

SimplePove [] \ x-10) 3-@7><-E) y.@7x-@ y-@

w UNIVERSITY of WASHINGTON L10: C++ Constructor Insanity CSE333, Summer 2023

10

w UNIVERSITY of WASHINGTON L10: C++ Constructor Insanity CSE333, Summer 2023

Initialization Lists

+» C++ lets you optionally declare an initialization list as part
of a constructor definition
" |nitializes fields according to parameters in the list
" The following two are (nearly) identical:

rPoint::Point(const int x, const int y) {)
X = X3
Y = Ys
std::cout << "Point constructed: (" << x << ",";
std::cout << y << ") " << std::endl; .
W |} @qgﬁp?OAb
& N el ..ufk
&\a? [// constructor with an initialization list & Vj&tftl
\\\ Point::Point (const int x, const int y) : x (x), y_(y)
EQ std::cout << "Point constructed: (" << x << ",";
std::cout << y << ")" << std::endl;
) g)

11

w UNIVERSITY of WASHINGTON L10: C++ Constructor Insanity CSE333, Summer 2023

;ﬂ]

Initialization vs. Construction

) =~
‘\v’l.

(class Point3D { . el e
. First, initialization list is applied.
public:

r
// constructor with 3 int arguments k\\\\‘ V,(h/'(:)‘x- Cé’
Point3D (const int x, const int y, const int z)(: y (y), X;ZEI:X

2 ”
Q 7 - SeX » Next, constructor body is executed. A
private: o Q@“&
int x , y , z ; // data members
\}; // class Point3D

J

= Data members in initializer list are initialized in the order they are
defined in the class, not by the initialization list ordering (!)

- Data members that don’t appear in the initialization list are default
initialized/constructed before body is executed

" |nitialization preferred to assignment to avoid extra steps

- Real code should never mix the two styles

12

YW UNIVERSITY of WASHINGTON

Lecture Outline

» Constructors

J/
>

« Copy Constructors
+ Assignment
« Destructors
+ Extra Details

L10: C++ Constructor Insanity

CSE333, Summer 2023

13

W UNIVERSITY of WASHINGTON L10: C++ Constructor Insanity CSE333, Summer 2023

]

=~
=
m

—
"\v’n

Copy Constructors

% C++ has the notion of a copy constructor (cctor)

= Used to create a new object as a copy of an existing object

Point::Point (const int x, const int y) : x (x), vy (y) { }

// copy constructor
Point::Point (const Pointé& copyme)

X = copyme.x ;
- - 4 \%_@

y = copyme.y ;
} —_
void Foo () {
Point x(1, 2); // invokes the 2-int-arguments constructor
A Rl
Point y(x):; // invokes the copy constructor
— // could also be written as "Point y = x;"

" |nitializer lists can also be used in copy constructors (preferred)

14

w UNIVERSITY of WASHINGTON L10: C++ Constructor Insanity CSE333, Summer 2023

X

3

+ If you don’t define your own copy constructor, C++ will
synthesize one for you

Synthesized Copy Constructor

[-
-

= |t will do a shallow copy of all of the fields (i.e., member variables)
of your class

= Sometimes the right thing; sometimes the wrong thing

[#include "SimplePoint.h"
. // definitions for Distance () and SetLocation ()

int main(int argc, char** argv) {
SimplePoint x;
SimplePoint y(x); // invokes synthesized copy constructor

return EXIT SUCCESS;
}

15

w UNIVERSITY of WASHINGTON L10: C++ Constructor Insanity CSE333, Summer 2023

When Do Copies Happen?

+ The copy constructor is invoked if:

® You initialize an object from Point x; 7 default ctor
another object of the same Point y(x); // copy ctor
type: Point z = vy; // copy ctor
" You pass a non-reference — \
vold Fo) { ... }

object as a value parameter

t f tion: Point vy; // default ctor
o a function: Foo (7] 3 // copy ctor
® You return a non-reference - N
object value from a function: el ntl)
Point y; // default ctor
return y; // copy ctor
}
. J

16

YW UNIVERSITY of WASHINGTON

L10: C++ Constructor Insanity

Compiler Optimization

+» The compiler sometimes uses a “return by value

optimization” or “move semantics” to eliminate
unnecessary copies 2

/C/M”(on O/

= Sometimes you might not see a constructor get invoked when you
might expect it

Mo N

| x) -2 |
I EScEPNAY
2 [x@ y @]

\J
FO ~]

|y = Ayl

(Point Foo() { h
Point vy; // default ctor
return y; // copy ctor? optimized?

}

int main(int argc, char** argv) {

Point x (1, 2); // two-ints-argument ctor
Point y = Xx; // copy ctor

Point z = Foo(); // copy ctor? optimized?

D 43)

CSE333, Summer 2023

YW UNIVERSITY of WASHINGTON

Lecture Outline

» Constructors

J/
>

«» Copy Constructors
+» Assignment
« Destructors
+ Extra Details

L10: C++ Constructor Insanity

CSE333, Summer 2023

18

YW UNIVERSITY of WASHINGTON L10: C++ Constructor Insanity

Assignment != Construction

+» “="is the assignment operator

= Assigns values to an existing, already constructed object

CSE333, Summer 2023

Point w; // default ctor

Point x(1, 2); // two-ints—-argument ctor
Point vy (x); // copy ctor

Point z = w; // copy ctor

y = X; // assignment operator

19

YW UNIVERSITY of WASHINGTON

L10: C++ Constructor Insanity CSE333, Summer 2023

Overloading the “=" Operator

+ You can choose to define the “=" operator

" But there are some rules you should follow:

< Polnté&

Y_
}
retur

}

Point a

a:=Cb =

a = (b
b

(a = b)

1f (this

n

.
4

rhs.y ;

*this;

oilnt::operator=(const Point& rhs) {
!= &rhs) { // (1) always check against this
rhs.x ;

// (2) always return *this from op=

default constructor

works because = return *this

equiv. to above (= 1s right-associative)
"works'" because = returns a non-const

]

<
i

=~

-
“‘U’

w UNIVERSITY of WASHINGTON L10: C++ Constructor Insanity CSE333, Summer 2023

Synthesized Assighment Operator

+ If you don’t define the assignment operator, C++ will
synthesize one for you

= |t will do a shallow copy of all of the fields (i.e., member variables)
of your class

= Sometimes the right thing; sometimes the wrong thing

[#include "SimplePoint.h"
. // definitions for Distance () and SetLocation ()

int main(int argc, char** argv) {
SimplePoint x;
SimplePoint y(x);
y = X; // invokes synthesized assignment operator
return EXIT SUCCESS;

21

YW UNIVERSITY of WASHINGTON

Lecture Outline

» Constructors

J/
>

«» Copy Constructors
+ Assignment
«» Destructors
+ Extra Details

L10: C++ Constructor Insanity

CSE333, Summer 2023

22

w UNIVERSITY of WASHINGTON L10: C++ Constructor Insanity CSE333, Summer 2023

Destructors

% C++ has the notion of a destructor (dtor)

" |nvoked automatically when a class instance is deleted, goes out
of scope, etc. (even via exceptions or other causes!)

= Place to put your cleanup code — free any dynamic storage or
other resources owned by the object

= Standard C++ idiom for managing dynamic resources
- Slogan: “Resource Acquisition Is Initialization” (RAIl)

N> Paro\-w

-

\.

(Point:C:Point() { // destructor

// do any cleanup needed when a Point object goes away
// (nothing to do here since we have no dynamic resources)

}

23

W UNIVERSITY of WASHINGTON L10: C++ Constructor Insanity CSE333, Summer 2023

Destructor Example

(class FileDescriptor {
public:
FileDescriptor (char* file) { // Constructor
fd = open(file, O RDONLY) ;
// Error checking omitted

}

~FileDescriptor () { close(fd); } // Destructor

int get fd() const { return fd ; } // inline member function
private:

int fd ; // data member

}; // class FileDescriptor
FileDescriptor. h)

#include "FileDescriptor.h"

int main(int argc, char** argv) {
FileDescriptor fd("foo.txt");

(n
return EXIT SUCCESS; & Ao vOns alber vbo

24

YW UNIVERSITY of WASHINGTON

Lecture Outline

» Constructors

J/
>

«» Copy Constructors
+ Assignment

« Destructors

+» Extra Details

L10: C++ Constructor Insanity

CSE333, Summer 2023

28

YW UNIVERSITY of WASHINGTON

Rule of Three

+ |f you define any of:
1) Destructor
2) Copy Constructor
3) Assignment (operator=)

+ Then you should normally define all three

= Can explicitly ask for default synthesized versions (C++11):

L10: C++ Constructor Insanity

CSE333, Summer 2023

e .
class Point {

public:

Point ()
~Point ()

default;
default;
Point (const Pointé& copyme)
Pointé& operator=(const Pointé& rhs)

default;
default; //

the
the
the
the

default
default
default
default

ctor
dtor
cctor

m_um

w UNIVERSITY of WASHINGTON L10: C++ Constructor Insanity CSE333, Summer 2023

Dealing with the Insanity (C++11)

+» C++ style guide tip:
= Disabling the copy constructor and assignment operator can avoid
confusion from implicit invocation and excessive copying

Point_2011.h
(class Point { N
public:
Point (const int x, const int y) : x (x), v (y) { } // ctor
Point (const Point& copyme) = delete; // declare cctor and "=" as
Pointé& operator=(const Point& rhs) = delete; // as deleted (C++11)
private:
}Y: // class Point
Point w; // compiler error (no default constructor)
Point x(1, 2); // OK!
Point y = w; // compiler error (no copy constructor)
y = X; // compiler error (no assignment operator)
\ J

30

YW UNIVERSITY of WASHINGTON L10: C++ Constructor Insanity

CSE333, Summer 2023

Access Control

+ Access modifiers for members:
= public:accessible to all parts of the program

" private:accessible to the member functions of the class
- Private to class, not object instances

" protected: accessible to member functions of the class and
any derived classes (subclasses — more to come, later)

+ Reminders:

= Access modifiers apply to all members that follow until another
access modifier is reached

= If no access modifier is specified, st ruct members default to
publicand class members defaulttoprivate

31

w UNIVERSITY of WASHINGTON L10: C++ Constructor Insanity CSE333, Summer 2023

Nonmember Functions

“Nonmember functions” are just normal functions that

happen to use some class

= Called like a regular function instead of as a member of a class
object instance
- This gets a little weird when we talk about operators...

" These do not have access to the class’ private members

Useful nonmember functions often included as part of

interface to a class

= Declaration goes in header file, but outsid(i’of Cﬁssggﬁnition
MeMW on — Mew ")
{ J&’UL, ?D\H Dlwuc?aﬁg P) Aon)bb D)‘*aM(?o\HG P\ o e PL

\ ey P25
pl. D:swaPZL)» 2 O ;;M;«i} (Vedor, \feeta<s,),

;‘,.;52 Plovk \lagor > W“*’f' vee | * vet)

Jed ® el
32

w UNIVERSITY of WASHINGTON L10: C++ Constructor Insanity CSE333, Summer 2023

friend Nonmember Functions

+ A class can give a nonmember function (or class) access to
its non-public members by declaringitasa friend
within its definition
"= Not a class member, but has access privileges as if it were

= friend functions are usually unnecessary if your class includes

appropriate “getter” public functions

Complex.h
\

(class Complex {
friend std::istream& operator>>(std::istream& in, Complexé& a);

\}; // class Complex

[std::istreams operator>>(std::istream& in, Complexé& a) {

}

\\ J

Complex.cc 33

w UNIVERSITY of WASHINGTON L10: C++ Constructor Insanity CSE333, Summer 2023

When to use Nonmember and friend °;

\
)
There is wore to C++ object design that we don't \[4

. M ber f i . have time to get to; these are good rules of thumb,
ember tunctions. . e cure +o +hink avout your class carefullyl

" QOperators that modify the object being called on
- Assignment operator (operator=)

= “Core” non-operator functionality that is part of the class
interface

+ Nonmember functions:

= Used for commutative operators

- e.g.,s0v1l + v2 isinvokedas operator+ (vl, v2)instead of
vl.operator+ (v2)

= |f operating on two types and the class is on the right-hand side
« e.g.,cin >> complex;

= Returning a “new” object, not modifying an existing one

" Only grant friend permission if you NEED to

34

w UNIVERSITY of WASHINGTON L10: C++ Constructor Insanity CSE333, Summer 2023

Same nwame, b
Namespaces e

namespace

+» Each namespace is a separate scope (:Tterator /

i i . tuIterator
= Useful for avoiding symbol collisions! 4 0

lowercase

& Namespace dEfInItIOn/ Namespace doesw't add

m namespace name { ” indewtation to contents
. // declarations go here Comment +o remind that this
o @ // namespace name « T is eud of namespace

\p
Y ¢ ® Doesn’t end with a semi-colon and doesn’t add to the indentation

A} of its dontents
= Creates a new namespace name if it did not exist, otherwise adds

to the existing namespace (!)

- This means that components (e.g., classes, functions) of a namespace
can be defined in multiple source files

36

YW UNIVERSITY of WASHINGTON L10: C++ Constructor Insanity

CSE333, Summer 2023

Classes vs. Namespaces

+» They seems somewhat similar, but classes are not
namespaces:

= There are no instances/objects of a namespace; a namespace is
just a group of logically-related things (classes, functions, etc.)

" To access a member of a namespace, you must use the fully
qualified name (i.e., nsp name: :member) ™
. — a. US!
- Unless you are using that namespace —¥ € L "

« You only used the fully qualified name of a class member when you
are defining it outside of the scope of the class definition

Ly in He ce Rle

37

W UNIVERSITY of WASHINGTON L10: C++ Constructor Insanity CSE333, Summer 2023

Complex Example Walkthrough

See:
Complex.h
Complex.cc

testcomplex.cc

38

w UNIVERSITY of WASHINGTON L10: C++ Constructor Insanity CSE333, Summer 2023

Extra Exercise #1

+ Write a C++ program that:
" Has a class representing a 3-dimensional point

" Has the following methods:
- Return the inner product of two 3D points
- Return the distance between two 3D points
- Accessors and mutators for the %, v, and z coordinates

39

YW UNIVERSITY of WASHINGTON

L10: C++ Constructor Insanity

CSE333, Summer 2023

Extra Exercise #2

+ Write a C++ program that:

" Has a class representing a 3-dimensional box

- Use your Extra Exercise #1 class to store the coordinates of the
vertices that define the box

- Assume the box has right-angles only and its faces are parallel to the
axes, so you only need 2 vertices to define it

"= Has the following methods:
- Test if one box is inside another box
- Return the volume of a box
- Handles <<, =, and a copy constructor
- Uses const in all the right places

40

w UNIVERSITY of WASHINGTON L10: C++ Constructor Insanity CSE333, Summer 2023

Extra Exercise #3

+» Modify your Point3D class from Extra Exercise #1
= Disable the copy constructor and assignment operator

= Attempt to use copy & assignment in code and see what error the
compiler generates

= Write a CopyFrom () member function and try using it instead

- (See details about CopyFrom () in next lecture)

41

w UNIVERSITY of WASHINGTON L10: C++ Constructor Insanity CSE333, Summer 2023

Extra Exercise #4

+ Write a C++ class that:
= |s given the name of a file as a constructor argument

" Hasa GetNextWord () method that returns the next
whitespace- or newline-separated word from the file as a copy of
a string object, or an empty string once you hit EOF

" Has a destructor that cleans up anything that needs cleaning up

42

	Slide 1: About how long did Exercise 5 take you?
	Slide 2: C++ Constructor Insanity CSE 333 Summer 2023
	Slide 3: Relevant Course Information
	Slide 4: struct vs. class
	Slide 5: Memory Diagrams for Objects
	Slide 6: Lecture Outline
	Slide 7: Constructors
	Slide 8: Synthesized Default Constructor Example
	Slide 9: Synthesized Default Constructor
	Slide 10: Multiple Constructors (overloading)
	Slide 11: Initialization Lists
	Slide 12: Initialization vs. Construction
	Slide 13: Lecture Outline
	Slide 14: Copy Constructors
	Slide 15: Synthesized Copy Constructor
	Slide 16: When Do Copies Happen?
	Slide 17: Compiler Optimization
	Slide 18: Lecture Outline
	Slide 19: Assignment != Construction
	Slide 20: Overloading the “=” Operator
	Slide 21: Synthesized Assignment Operator
	Slide 22: Lecture Outline
	Slide 23: Destructors
	Slide 24: Destructor Example
	Slide 28: Lecture Outline
	Slide 29: Rule of Three
	Slide 30: Dealing with the Insanity (C++11)
	Slide 31: Access Control
	Slide 32: Nonmember Functions
	Slide 33: friend Nonmember Functions
	Slide 34: When to use Nonmember and friend
	Slide 36: Namespaces
	Slide 37: Classes vs. Namespaces
	Slide 38: Complex Example Walkthrough
	Slide 39: Extra Exercise #1
	Slide 40: Extra Exercise #2
	Slide 41: Extra Exercise #3
	Slide 42: Extra Exercise #4

