
CSE333, Summer 2023L10: C++ Constructor Insanity

1

pollev.com/cse333

About how long did Exercise 5 take you?

A. [0, 2) hours
B. [2, 4) hours
C. [4, 6) hours
D. [6, 8) hours
E. 8+ Hours
F. I didn’t submit / I prefer not to say

CSE333, Summer 2023L10: C++ Constructor Insanity

C++ Constructor Insanity
CSE 333 Summer 2023

Instructor: Timmy Yang

Teaching Assistants:

Jennifer Xu Leanna Nguyen Pedro Amarante

Sara Deutscher Tanmay Shah

CSE333, Summer 2023L10: C++ Constructor Insanity

Relevant Course Information

❖ Exercise 6 released today, next Monday (7/17)

▪ Write a substantive class in C++ (uses a lot of what we will talk
about in lecture today)

❖ Homework 2 due next Thursday (7/20)

▪ File system crawler, indexer, and search engine

▪ Note: libhw1.a (yours or ours) and the .h files from hw1 need
to be in right directory (~yourgit/hw1/)

▪ Note: use Ctrl-D to exit searchshell

▪ Tip: test on directory of small self-made files

❖ Quiz 1 closes at 11:59 pm tonight (7/12)

3

CSE333, Summer 2023L10: C++ Constructor Insanity

struct vs. class

❖ In C, a struct can only contain data fields

▪ No methods and all fields are always accessible

❖ In C++, struct and class are (nearly) the same!

▪ Both can have methods and member visibility
(public/private/protected)

▪ Minor difference: members are default public in a struct and
default private in a class

❖ Common style convention:
▪ Use struct for simple bundles of data

▪ Use class for abstractions with data + functions

4

STYLE
TIP

CSE333, Summer 2023L10: C++ Constructor Insanity

Memory Diagrams for Objects

❖ An object is an instance of a class that maintains its state
independent from other objects

▪ This state is the collection of its data members

▪ Conceptually, an object acts like a collection of data fields (plus
class metadata)

• Layout is not specified or guaranteed, unlike structs in C

❖ Drawn out as variables within variables:

5

class Point {

 ...

 private:

 int x_; // data member

 int y_; // data member

}; // class Point

CSE333, Summer 2023L10: C++ Constructor Insanity

Lecture Outline

❖ Constructors

❖ Copy Constructors

❖ Assignment

❖ Destructors

❖ Extra Details

6

CSE333, Summer 2023L10: C++ Constructor Insanity

Constructors

❖ A constructor (ctor) initializes a newly-instantiated object

▪ A class can have multiple constructors that differ in parameters

▪ A constructor must be invoked when creating a new instance of
an object – which one depends on how the object is instantiated

❖ Written with the class name as the method name:

▪ C++ will automatically create a synthesized default constructor if
you have no user-defined constructors

• Takes no arguments and calls the default ctor on all non-“plain old
data” (non-POD) member variables

• Synthesized default ctor will fail if you have non-initialized const or
reference data members

7

Point(const int x, const int y);

CSE333, Summer 2023L10: C++ Constructor Insanity

Synthesized Default Constructor Example

8

class SimplePoint {

 public:

 // no constructors declared!

 int get_x() const { return x_; } // inline member function

 int get_y() const { return y_; } // inline member function

 double Distance(const SimplePoint& p) const;

 void SetLocation(int x, int y);

 private:

 int x_; // data member

 int y_; // data member

}; // class SimplePoint SimplePoint.h

#include "SimplePoint.h"

... // definitions for Distance() and SetLocation()

int main(int argc, char** argv) {

 SimplePoint x; // invokes synthesized default constructor

 return EXIT_SUCCESS;

}

SimplePoint.cc

CSE333, Summer 2023L10: C++ Constructor Insanity

Synthesized Default Constructor

❖ If you define any constructors, C++ assumes you have
defined all the ones you intend to be available and will
not add any others

9

#include "SimplePoint.h"

// defining a constructor with two arguments

SimplePoint::SimplePoint(const int x, const int y) {

 x_ = x;

 y_ = y;

}

void Foo() {

 SimplePoint x; // compiler error: if you define any

 // ctors, C++ will NOT synthesize a

 // default constructor for you.

 SimplePoint y(1, 2); // works: invokes the 2-int-arguments

 // constructor

}

CSE333, Summer 2023L10: C++ Constructor Insanity

Multiple Constructors (overloading)

10

#include "SimplePoint.h"

// default constructor

SimplePoint::SimplePoint() {

 x_ = 0;

 y_ = 0;

}

// constructor with two arguments

SimplePoint::SimplePoint(const int x, const int y) {

 x_ = x;

 y_ = y;

}

void Foo() {

 SimplePoint x; // invokes the default constructor

 SimplePoint y(1, 2); // invokes the 2-int-arguments ctor

 SimplePoint a[3]; // invokes the default ctor 3 times

}

CSE333, Summer 2023L10: C++ Constructor Insanity

Initialization Lists

❖ C++ lets you optionally declare an initialization list as part
of a constructor definition

▪ Initializes fields according to parameters in the list

▪ The following two are (nearly) identical:

11

// constructor with an initialization list

Point::Point(const int x, const int y) : x_(x), y_(y) {

 std::cout << "Point constructed: (" << x_ << ",";

 std::cout << y_<< ")" << std::endl;

}

Point::Point(const int x, const int y) {

 x_ = x;

 y_ = y;

 std::cout << "Point constructed: (" << x_ << ",";

 std::cout << y_<< ")" << std::endl;

}

CSE333, Summer 2023L10: C++ Constructor Insanity

Initialization vs. Construction

▪ Data members in initializer list are initialized in the order they are
defined in the class, not by the initialization list ordering (!)

• Data members that don’t appear in the initialization list are default
initialized/constructed before body is executed

▪ Initialization preferred to assignment to avoid extra steps

• Real code should never mix the two styles

12

class Point3D {

 public:

 // constructor with 3 int arguments

 Point3D(const int x, const int y, const int z) : y_(y), x_(x) {

 z_ = z;

 }

 private:

 int x_, y_, z_; // data members

}; // class Point3D

First, initialization list is applied.

Next, constructor body is executed.

STYLE
TIP

CSE333, Summer 2023L10: C++ Constructor Insanity

Lecture Outline

❖ Constructors

❖ Copy Constructors

❖ Assignment

❖ Destructors

❖ Extra Details

13

CSE333, Summer 2023L10: C++ Constructor Insanity

Copy Constructors

❖ C++ has the notion of a copy constructor (cctor)

▪ Used to create a new object as a copy of an existing object

14

Point::Point(const int x, const int y) : x_(x), y_(y) { }

// copy constructor

Point::Point(const Point& copyme) {

 x_ = copyme.x_;

 y_ = copyme.y_;

}

void Foo() {

 Point x(1, 2); // invokes the 2-int-arguments constructor

 Point y(x); // invokes the copy constructor

 // could also be written as "Point y = x;"

}

▪ Initializer lists can also be used in copy constructors (preferred)

STYLE
TIP

CSE333, Summer 2023L10: C++ Constructor Insanity

Synthesized Copy Constructor

❖ If you don’t define your own copy constructor, C++ will
synthesize one for you

▪ It will do a shallow copy of all of the fields (i.e., member variables)
of your class

▪ Sometimes the right thing; sometimes the wrong thing

15

#include "SimplePoint.h"

... // definitions for Distance() and SetLocation()

int main(int argc, char** argv) {

 SimplePoint x;

 SimplePoint y(x); // invokes synthesized copy constructor

 ...

 return EXIT_SUCCESS;

}

CSE333, Summer 2023L10: C++ Constructor Insanity

When Do Copies Happen?

❖ The copy constructor is invoked if:

▪ You initialize an object from
another object of the same
type:

▪ You pass a non-reference
object as a value parameter
to a function:

▪ You return a non-reference
object value from a function:

16

void Foo(Point x) { ... }

Point y; // default ctor

Foo(y); // copy ctor

Point x; // default ctor

Point y(x); // copy ctor

Point z = y; // copy ctor

Point Foo() {

 Point y; // default ctor

 return y; // copy ctor

}

CSE333, Summer 2023L10: C++ Constructor Insanity

Compiler Optimization

❖ The compiler sometimes uses a “return by value
optimization” or “move semantics” to eliminate
unnecessary copies

▪ Sometimes you might not see a constructor get invoked when you
might expect it

17

Point Foo() {

 Point y; // default ctor

 return y; // copy ctor? optimized?

}

int main(int argc, char** argv) {

 Point x(1, 2); // two-ints-argument ctor

 Point y = x; // copy ctor

 Point z = Foo(); // copy ctor? optimized?

}

CSE333, Summer 2023L10: C++ Constructor Insanity

Lecture Outline

❖ Constructors

❖ Copy Constructors

❖ Assignment

❖ Destructors

❖ Extra Details

18

CSE333, Summer 2023L10: C++ Constructor Insanity

Assignment != Construction

❖ “=” is the assignment operator

▪ Assigns values to an existing, already constructed object

19

Point w; // default ctor

Point x(1, 2); // two-ints-argument ctor

Point y(x); // copy ctor

Point z = w; // copy ctor

y = x; // assignment operator

CSE333, Summer 2023L10: C++ Constructor Insanity

Overloading the “=” Operator

❖ You can choose to define the “=” operator

▪ But there are some rules you should follow:

20

Point& Point::operator=(const Point& rhs) {

 if (this != &rhs) { // (1) always check against this

 x_ = rhs.x_;

 y_ = rhs.y_;

 }

 return *this; // (2) always return *this from op=

}

Point a; // default constructor

a = b = c; // works because = return *this

a = (b = c); // equiv. to above (= is right-associative)

(a = b) = c; // "works" because = returns a non-const

STYLE
TIP

CSE333, Summer 2023L10: C++ Constructor Insanity

Synthesized Assignment Operator

❖ If you don’t define the assignment operator, C++ will
synthesize one for you

▪ It will do a shallow copy of all of the fields (i.e., member variables)
of your class

▪ Sometimes the right thing; sometimes the wrong thing

21

#include "SimplePoint.h"

... // definitions for Distance() and SetLocation()

int main(int argc, char** argv) {

 SimplePoint x;

 SimplePoint y(x);

 y = x; // invokes synthesized assignment operator

 return EXIT_SUCCESS;

}

CSE333, Summer 2023L10: C++ Constructor Insanity

Lecture Outline

❖ Constructors

❖ Copy Constructors

❖ Assignment

❖ Destructors

❖ Extra Details

22

CSE333, Summer 2023L10: C++ Constructor Insanity

Destructors

❖ C++ has the notion of a destructor (dtor)

▪ Invoked automatically when a class instance is deleted, goes out
of scope, etc. (even via exceptions or other causes!)

▪ Place to put your cleanup code – free any dynamic storage or
other resources owned by the object

▪ Standard C++ idiom for managing dynamic resources

• Slogan: “Resource Acquisition Is Initialization” (RAII)

23

Point::~Point() { // destructor

 // do any cleanup needed when a Point object goes away

 // (nothing to do here since we have no dynamic resources)

}

CSE333, Summer 2023L10: C++ Constructor Insanity

Destructor Example

24

class FileDescriptor {

 public:

 FileDescriptor(char* file) { // Constructor

 fd_ = open(file, O_RDONLY);

 // Error checking omitted

 }

 ~FileDescriptor() { close(fd_); } // Destructor

 int get_fd() const { return fd_; } // inline member function

 private:

 int fd_; // data member

}; // class FileDescriptor

FileDescriptor.h

#include "FileDescriptor.h"

int main(int argc, char** argv) {

 FileDescriptor fd("foo.txt");

 return EXIT_SUCCESS;

}

CSE333, Summer 2023L10: C++ Constructor Insanity

Lecture Outline

❖ Constructors

❖ Copy Constructors

❖ Assignment

❖ Destructors

❖ Extra Details

28

CSE333, Summer 2023L10: C++ Constructor Insanity

Rule of Three

❖ If you define any of:

1) Destructor

2) Copy Constructor

3) Assignment (operator=)

❖ Then you should normally define all three

▪ Can explicitly ask for default synthesized versions (C++11):

29

class Point {

 public:

 Point() = default; // the default ctor

 ~Point() = default; // the default dtor

 Point(const Point& copyme) = default; // the default cctor

 Point& operator=(const Point& rhs) = default; // the default "="

 ...

CSE333, Summer 2023L10: C++ Constructor Insanity

Dealing with the Insanity (C++11)

❖ C++ style guide tip:

▪ Disabling the copy constructor and assignment operator can avoid
confusion from implicit invocation and excessive copying

30

class Point {

 public:

 Point(const int x, const int y) : x_(x), y_(y) { } // ctor

 ...

 Point(const Point& copyme) = delete; // declare cctor and "=" as

 Point& operator=(const Point& rhs) = delete; // as deleted (C++11)

 private:

 ...

}; // class Point

Point w; // compiler error (no default constructor)

Point x(1, 2); // OK!

Point y = w; // compiler error (no copy constructor)

y = x; // compiler error (no assignment operator)

Point_2011.h

CSE333, Summer 2023L10: C++ Constructor Insanity

Access Control

❖ Access modifiers for members:
▪ public: accessible to all parts of the program

▪ private: accessible to the member functions of the class

• Private to class, not object instances

▪ protected: accessible to member functions of the class and
any derived classes (subclasses – more to come, later)

❖ Reminders:

▪ Access modifiers apply to all members that follow until another
access modifier is reached

▪ If no access modifier is specified, struct members default to
public and class members default to private

31

CSE333, Summer 2023L10: C++ Constructor Insanity

Nonmember Functions

❖ “Nonmember functions” are just normal functions that
happen to use some class

▪ Called like a regular function instead of as a member of a class
object instance

• This gets a little weird when we talk about operators…

▪ These do not have access to the class’ private members

❖ Useful nonmember functions often included as part of
interface to a class

▪ Declaration goes in header file, but outside of class definition

32

CSE333, Summer 2023L10: C++ Constructor Insanity

friend Nonmember Functions

❖ A class can give a nonmember function (or class) access to
its non-public members by declaring it as a friend
within its definition

▪ Not a class member, but has access privileges as if it were

▪ friend functions are usually unnecessary if your class includes
appropriate “getter” public functions

33

class Complex {

 ...

 friend std::istream& operator>>(std::istream& in, Complex& a);

 ...

}; // class Complex

std::istream& operator>>(std::istream& in, Complex& a) {

 ...

}

Complex.h

Complex.cc

CSE333, Summer 2023L10: C++ Constructor Insanity

When to use Nonmember and friend

❖ Member functions:

▪ Operators that modify the object being called on

• Assignment operator (operator=)

▪ “Core” non-operator functionality that is part of the class
interface

❖ Nonmember functions:

▪ Used for commutative operators

• e.g., so v1 + v2 is invoked as operator+(v1, v2)instead of
v1.operator+(v2)

▪ If operating on two types and the class is on the right-hand side

• e.g., cin >> complex;

▪ Returning a “new” object, not modifying an existing one

▪ Only grant friend permission if you NEED to

34

There is more to C++ object design that we don’t

have time to get to; these are good rules of thumb,

but be sure to think about your class carefully!

STYLE
TIP

CSE333, Summer 2023L10: C++ Constructor Insanity

Namespaces

❖ Each namespace is a separate scope

▪ Useful for avoiding symbol collisions!

❖ Namespace definition:
▪ namespace name {

 // declarations go here

}

▪ Doesn’t end with a semi-colon and doesn’t add to the indentation
of its contents

▪ Creates a new namespace name if it did not exist, otherwise adds
to the existing namespace (!)

• This means that components (e.g., classes, functions) of a namespace
can be defined in multiple source files

36

namespace name {

// declarations go here

} // namespace name

ll::Iterator

ht::Iterator

Same name, but

different

namespace

Namespace doesn’t add

indentation to contents

Comment to remind that this

is end of namespace

lowercase

CSE333, Summer 2023L10: C++ Constructor Insanity

Classes vs. Namespaces

❖ They seems somewhat similar, but classes are not
namespaces:

▪ There are no instances/objects of a namespace; a namespace is
just a group of logically-related things (classes, functions, etc.)

▪ To access a member of a namespace, you must use the fully
qualified name (i.e., nsp_name::member)

• Unless you are using that namespace

• You only used the fully qualified name of a class member when you
are defining it outside of the scope of the class definition

37

CSE333, Summer 2023L10: C++ Constructor Insanity

Complex Example Walkthrough

See:
Complex.h

Complex.cc

testcomplex.cc

38

CSE333, Summer 2023L10: C++ Constructor Insanity

Extra Exercise #1

❖ Write a C++ program that:

▪ Has a class representing a 3-dimensional point

▪ Has the following methods:

• Return the inner product of two 3D points

• Return the distance between two 3D points

• Accessors and mutators for the x, y, and z coordinates

39

CSE333, Summer 2023L10: C++ Constructor Insanity

Extra Exercise #2

❖ Write a C++ program that:

▪ Has a class representing a 3-dimensional box

• Use your Extra Exercise #1 class to store the coordinates of the
vertices that define the box

• Assume the box has right-angles only and its faces are parallel to the
axes, so you only need 2 vertices to define it

▪ Has the following methods:

• Test if one box is inside another box

• Return the volume of a box

• Handles <<, =, and a copy constructor

• Uses const in all the right places

40

CSE333, Summer 2023L10: C++ Constructor Insanity

Extra Exercise #3

❖ Modify your Point3D class from Extra Exercise #1

▪ Disable the copy constructor and assignment operator

▪ Attempt to use copy & assignment in code and see what error the
compiler generates

▪ Write a CopyFrom() member function and try using it instead

• (See details about CopyFrom() in next lecture)

41

CSE333, Summer 2023L10: C++ Constructor Insanity

Extra Exercise #4

❖ Write a C++ class that:

▪ Is given the name of a file as a constructor argument

▪ Has a GetNextWord() method that returns the next
whitespace- or newline-separated word from the file as a copy of
a string object, or an empty string once you hit EOF

▪ Has a destructor that cleans up anything that needs cleaning up

42

	Slide 1: About how long did Exercise 5 take you?
	Slide 2: C++ Constructor Insanity CSE 333 Summer 2023
	Slide 3: Relevant Course Information
	Slide 4: struct vs. class
	Slide 5: Memory Diagrams for Objects
	Slide 6: Lecture Outline
	Slide 7: Constructors
	Slide 8: Synthesized Default Constructor Example
	Slide 9: Synthesized Default Constructor
	Slide 10: Multiple Constructors (overloading)
	Slide 11: Initialization Lists
	Slide 12: Initialization vs. Construction
	Slide 13: Lecture Outline
	Slide 14: Copy Constructors
	Slide 15: Synthesized Copy Constructor
	Slide 16: When Do Copies Happen?
	Slide 17: Compiler Optimization
	Slide 18: Lecture Outline
	Slide 19: Assignment != Construction
	Slide 20: Overloading the “=” Operator
	Slide 21: Synthesized Assignment Operator
	Slide 22: Lecture Outline
	Slide 23: Destructors
	Slide 24: Destructor Example
	Slide 28: Lecture Outline
	Slide 29: Rule of Three
	Slide 30: Dealing with the Insanity (C++11)
	Slide 31: Access Control
	Slide 32: Nonmember Functions
	Slide 33: friend Nonmember Functions
	Slide 34: When to use Nonmember and friend
	Slide 36: Namespaces
	Slide 37: Classes vs. Namespaces
	Slide 38: Complex Example Walkthrough
	Slide 39: Extra Exercise #1
	Slide 40: Extra Exercise #2
	Slide 41: Extra Exercise #3
	Slide 42: Extra Exercise #4

