
CSE333, Summer 2023L09: References, Const, Classes

1

pollev.com/cse333

About how long did Exercise 4 take you?

A. [0, 2) hours
B. [2, 4) hours
C. [4, 6) hours
D. [6, 8) hours
E. 8+ Hours
F. I didn’t submit / I prefer not to say

CSE333, Summer 2023L09: References, Const, Classes

C++ References, Const, Classes
CSE 333 Summer 2023

Instructor: Timmy Yang

Teaching Assistants:

Jennifer Xu Leanna Nguyen Pedro Amarante

Sara Deutscher Tanmay Shah

CSE333, Summer 2023L09: References, Const, Classes

Relevant Course Information (1/2)

❖ Exercise 5 due Wednesday @ 1 pm

▪ “Lighter” exercise in C++ (Rating: 1)

❖ Homework 2 due a week from Thursday (7/20)

▪ Partner sign up due tomorrow night (see Ed post #116)

▪ File system crawler, indexer, and search engine

▪ Note: libhw1.a (yours or ours) and the .h files from hw1 need
to be in right directory (~yourgit/hw1/)

▪ Note: use Ctrl-D to exit searchshell, test on directory of small
self-made files

3

CSE333, Summer 2023L09: References, Const, Classes

Relevant Course Information (2/2)

❖ Quiz 1 released today @ 2pm (7/10)

▪ Will be administered on Gradescope, closes Wednesday (7/12) @
11:59pm

• Quiz should take 45-30 min to complete (i.e., meant to be short).

▪ Please keep all Quiz questions on Ed private

• If anything is frequently asked, we’ll make a separate announcement.

▪ Questions about the Quiz in Office Hours can only be clarification
questions.

• TAs may ask you to post on the Ed board instead of answering
directly.

▪ Academic Conduct Policy applies to all Quizzes as well

• Please don’t copy other’s work, do not use Chat-GPT

• https://courses.cs.washington.edu/courses/cse333/23su/quizzes/

4

https://courses.cs.washington.edu/courses/cse333/23su/quizzes/

CSE333, Summer 2023L09: References, Const, Classes

Lecture Outline

❖ C++ References

❖ const in C++

❖ C++ Classes Intro

5

CSE333, Summer 2023L09: References, Const, Classes

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

▪ These work the same in C and C++

6

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int* z = &x;

 *z += 1;

 x += 1;

 z = &y;

 *z += 1;

 return EXIT_SUCCESS;

}

pointer.cc

x 5

y 10

z

Note: Arrow points
to next instruction.

CSE333, Summer 2023L09: References, Const, Classes

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

▪ These work the same in C and C++

7

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int* z = &x;

 *z += 1;

 x += 1;

 z = &y;

 *z += 1;

 return EXIT_SUCCESS;

}

pointer.cc

x 5

y 10

z 0x7fff…a4

Note: Arrow points
to next instruction.

CSE333, Summer 2023L09: References, Const, Classes

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

▪ These work the same in C and C++

8

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int* z = &x;

 *z += 1; // sets x to 6

 x += 1;

 z = &y;

 *z += 1;

 return EXIT_SUCCESS;

}

pointer.cc

x 6

y 10

z 0x7fff…a4

Note: Arrow points
to next instruction.

CSE333, Summer 2023L09: References, Const, Classes

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

▪ These work the same in C and C++

9

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int* z = &x;

 *z += 1; // sets x to 6

 x += 1; // sets x (and *z) to 7

 z = &y;

 *z += 1;

 return EXIT_SUCCESS;

}

pointer.cc

x 7

y 10

z 0x7fff…a4

Note: Arrow points
to next instruction.

CSE333, Summer 2023L09: References, Const, Classes

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

▪ These work the same in C and C++

10

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int* z = &x;

 *z += 1; // sets x to 6

 x += 1; // sets x (and *z) to 7

 z = &y; // sets z to the address of y

 *z += 1;

 return EXIT_SUCCESS;

}

pointer.cc

x 7

y 10

z 0x7fff…a0

Note: Arrow points
to next instruction.

CSE333, Summer 2023L09: References, Const, Classes

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

▪ These work the same in C and C++

11

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int* z = &x;

 *z += 1; // sets x to 6

 x += 1; // sets x (and *z) to 7

 z = &y; // sets z to the address of y

 *z += 1; // sets y (and *z) to 11

 return EXIT_SUCCESS;

}

pointer.cc

x 7

y 11

z 0x7fff…a0

Note: Arrow points
to next instruction.

CSE333, Summer 2023L09: References, Const, Classes

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

12

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int& z = x;

 z += 1;

 x += 1;

 z = y;

 z += 1;

 return EXIT_SUCCESS;

}

reference.cc

x 5

y 10

Note: Arrow points
to next instruction.

CSE333, Summer 2023L09: References, Const, Classes

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

13

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int& z = x; // binds the name "z" to x

 z += 1;

 x += 1;

 z = y;

 z += 1;

 return EXIT_SUCCESS;

}

reference.cc

x, z 5

y 10

Note: Arrow points
to next instruction.

CSE333, Summer 2023L09: References, Const, Classes

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

14

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int& z = x; // binds the name "z" to x

 z += 1; // sets z (and x) to 6

 x += 1;

 z = y;

 z += 1;

 return EXIT_SUCCESS;

}

reference.cc

x, z 6

y 10

Note: Arrow points
to next instruction.

CSE333, Summer 2023L09: References, Const, Classes

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

15

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int& z = x; // binds the name "z" to x

 z += 1; // sets z (and x) to 6

 x += 1; // sets x (and z) to 7

 z = y;

 z += 1;

 return EXIT_SUCCESS;

}

reference.cc

x, z 7

y 10

Note: Arrow points
to next instruction.

CSE333, Summer 2023L09: References, Const, Classes

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

16

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int& z = x; // binds the name "z" to x

 z += 1; // sets z (and x) to 6

 x += 1; // sets x (and z) to 7

 z = y; // sets z (and x) to the value of y

 z += 1;

 return EXIT_SUCCESS;

}

reference.cc

x, z 10

y 10

Note: Arrow points
to next instruction.

CSE333, Summer 2023L09: References, Const, Classes

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference is mutating the aliased variable

▪ Introduced in C++ as part of the language

17

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int& z = x; // binds the name "z" to x

 z += 1; // sets z (and x) to 6

 x += 1; // sets x (and z) to 7

 z = y; // sets z (and x) to the value of y

 z += 1; // sets z (and x) to 11

 return EXIT_SUCCESS;

}

reference.cc

x, z 11

y 10

Note: Arrow points
to next instruction.

CSE333, Summer 2023L09: References, Const, Classes

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

18

void Swap(int& x, int& y) {

 int tmp = x;

 x = y;

 y = tmp;

}

int main(int argc, char** argv) {

 int a = 5, b = 10;

 Swap(a, b);

 cout << "a: " << a << "; b: " << b << endl;

 return EXIT_SUCCESS;

}

passbyreference.cc

(main) a 5

(main) b 10

Note: Arrow points
to next instruction.

CSE333, Summer 2023L09: References, Const, Classes

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

19

void Swap(int& x, int& y) {

 int tmp = x;

 x = y;

 y = tmp;

}

int main(int argc, char** argv) {

 int a = 5, b = 10;

 Swap(a, b);

 cout << "a: " << a << "; b: " << b << endl;

 return EXIT_SUCCESS;

}

passbyreference.cc

(main) a
(Swap) x

5

(main) b
(Swap) y

10

Note: Arrow points
to next instruction.

(Swap) tmp

CSE333, Summer 2023L09: References, Const, Classes

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

20

void Swap(int& x, int& y) {

 int tmp = x;

 x = y;

 y = tmp;

}

int main(int argc, char** argv) {

 int a = 5, b = 10;

 Swap(a, b);

 cout << "a: " << a << "; b: " << b << endl;

 return EXIT_SUCCESS;

}

passbyreference.cc

(main) a
(Swap) x

5

(main) b
(Swap) y

10

Note: Arrow points
to next instruction.

(Swap) tmp 5

CSE333, Summer 2023L09: References, Const, Classes

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

21

void Swap(int& x, int& y) {

 int tmp = x;

 x = y;

 y = tmp;

}

int main(int argc, char** argv) {

 int a = 5, b = 10;

 Swap(a, b);

 cout << "a: " << a << "; b: " << b << endl;

 return EXIT_SUCCESS;

}

passbyreference.cc

(main) a
(Swap) x

10

(main) b
(Swap) y

10

Note: Arrow points
to next instruction.

(Swap) tmp 5

CSE333, Summer 2023L09: References, Const, Classes

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

22

void Swap(int& x, int& y) {

 int tmp = x;

 x = y;

 y = tmp;

}

int main(int argc, char** argv) {

 int a = 5, b = 10;

 Swap(a, b);

 cout << "a: " << a << "; b: " << b << endl;

 return EXIT_SUCCESS;

}

passbyreference.cc

(main) a
(Swap) x

10

(main) b
(Swap) y

5

Note: Arrow points
to next instruction.

(Swap) tmp 5

CSE333, Summer 2023L09: References, Const, Classes

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

23

void Swap(int& x, int& y) {

 int tmp = x;

 x = y;

 y = tmp;

}

int main(int argc, char** argv) {

 int a = 5, b = 10;

 Swap(a, b);

 cout << "a: " << a << "; b: " << b << endl;

 return EXIT_SUCCESS;

}

passbyreference.cc

(main) a 10

(main) b 5

Note: Arrow points
to next instruction.

CSE333, Summer 2023L09: References, Const, Classes

What is your anticipated lecture/section
attendance modality?

A. Output "(1,2,3)"

B. Output "(3,2,3)"

C. Compiler error
about arguments
to Foo (in main)

D. Compiler error
about body of Foo

E. We’re lost…

24

pollev.com/cse333

What will happen when we try to compile and
run this code? poll1.cc

void Foo(int& x, int* y, int z) {

 z = *y;

 x += 2;

 y = &x;

}

int main(int argc, char** argv) {

 int a = 1;

 int b = 2;

 int& c = a;

 Foo(a, &b, c);

 std::cout << "(" << a << ", " << b

 << ", " << c << ")" << std::endl;

 return EXIT_SUCCESS;

}

CSE333, Summer 2023L09: References, Const, Classes

Lecture Outline

❖ C++ References

❖ const in C++

❖ C++ Classes Intro

25

CSE333, Summer 2023L09: References, Const, Classes

const

❖ const: this cannot be changed/mutated

▪ Used much more in C++ than in C

▪ Signal of intent to compiler; meaningless at hardware level

• Results in compile-time errors

26

void BrokenPrintSquare(const int& i) {

 i = i*i; // compiler error here!

 std::cout << i << std::endl;

}

int main(int argc, char** argv) {

 int j = 2;

 BrokenPrintSquare(j);

 return EXIT_SUCCESS;

}

brokenpassbyrefconst.cc

CSE333, Summer 2023L09: References, Const, Classes

const and Pointers

❖ Pointers can change data in two different contexts:

1) You can change the value of the pointer

2) You can change the thing the pointer points to
(via dereference)

❖ const can be used to prevent either/both of these
behaviors!
▪ const next to pointer name means you can’t change the value of

the pointer

▪ const next to data type pointed to means you can’t use this
pointer to change the thing being pointed to

▪ Tip: read variable declaration from right-to-left

27

CSE333, Summer 2023L09: References, Const, Classes

const and Pointers

❖ The syntax with pointers is confusing:

28

int main(int argc, char** argv) {

 int x = 5; // int

 const int y = 6; // (const int)

 y++;

 const int* z = &y; // pointer to a (const int)

 *z += 1;

 z++;

 int* const w = &x; // (const pointer) to a (variable int)

 *w += 1;

 w++;

 const int* const v = &x; // (const pointer) to a (const int)

 *v += 1;

 v++;

 return EXIT_SUCCESS;

}

constmadness.cc

CSE333, Summer 2023L09: References, Const, Classes

const and Pointers

❖ The syntax with pointers is confusing:

29

int main(int argc, char** argv) {

 int x = 5; // int

 const int y = 6; // (const int)

 y++; // compiler error

 const int* z = &y; // pointer to a (const int)

 *z += 1; // compiler error

 z++; // ok

 int* const w = &x; // (const pointer) to a (variable int)

 *w += 1; // ok

 w++; // compiler error

 const int* const v = &x; // (const pointer) to a (const int)

 *v += 1; // compiler error

 v++; // compiler error

 return EXIT_SUCCESS;

}

constmadness.cc

CSE333, Summer 2023L09: References, Const, Classes

const Parameters

❖ A const parameter
cannot be mutated inside
the function

▪ Therefore it does not
matter if the argument can
be mutated or not

❖ A non-const parameter
may be mutated inside
the function

▪ Compiler won’t let you
pass in const parameters

30

void Foo(const int* y) {

 std::cout << *y << std::endl;

}

void Bar(int* y) {

 std::cout << *y << std::endl;

}

int main(int argc, char** argv) {

 const int a = 10;

 int b = 20;

 Foo(&a); // OK

 Foo(&b); // OK

 Bar(&a); // not OK – error

 Bar(&b); // OK

 return EXIT_SUCCESS;

}

STYLE
TIP

Make parameters const when you can!

CSE333, Summer 2023L09: References, Const, Classes

What is your anticipated lecture/section
attendance modality?

A. Output "(2,4,0)"

B. Output "(2,4,3)"

C. Compiler error
about arguments
to Foo (in main)

D. Compiler error
about body of Foo

E. We’re lost…

31

pollev.com/cse333

What will happen when we try to compile and
run this code?

void Foo(int* const x,

 int& y, int z) {

 *x += 1;

 y *= 2;

 z -= 3;

}

int main(int argc, char** argv) {

 const int a = 1;

 int b = 2, c = 3;

 Foo(&a, b, c);

 std::cout << "(" << a << "," << b

 << "," << c << ")" << std::endl;

 return EXIT_SUCCESS;

}

poll2.cc

CSE333, Summer 2023L09: References, Const, Classes

When to Use References?

❖ A stylistic choice, not mandated by the C++ language

❖ Google C++ style guide suggests:

▪ Input parameters:
• Either use values (for primitive types like int or small

structs/objects)
• Or use const references (for complex struct/object instances)

▪ Output parameters:
• Use const pointers

– Unchangeable pointers referencing changeable data

▪ Ordering:
• List input parameters first, then output parameters last

32

void CalcArea(const int& width, const int& height,

 int* const area) {

 *area = width * height;

} styleguide.cc

STYLE
TIP

CSE333, Summer 2023L09: References, Const, Classes

Lecture Outline

❖ C++ References

❖ const in C++

❖ C++ Classes Intro

33

CSE333, Summer 2023L09: References, Const, Classes

Classes

❖ Class definition syntax (in a .h file):

▪ Members can be functions (methods) or data (variables)

❖ Class member function definition syntax (in a .cc file):

▪ (1) define within the class definition or (2) declare within the class
definition and then define elsewhere

34

class Name {

 public:

 // public member definitions & declarations go here

 private:

 // private member definitions & declarations go here

}; // class Name

retType Name::MethodName(type1 param1, …, typeN paramN) {

 // body statements

}

CSE333, Summer 2023L09: References, Const, Classes

Class Organization

❖ It’s a little more complex than in C when modularizing
with struct definition:

▪ Class definition is part of interface and should go in .h file

• Private members still must be included in definition (!)

▪ Usually put member function definitions into companion .cc file
with implementation details

• Common exception: setter and getter methods

▪ These files can also include non-member functions that use the
class

❖ Unlike Java, you can name files anything you want
▪ Typically Name.cc and Name.h for class Name

35

CSE333, Summer 2023L09: References, Const, Classes

Const & Classes

❖ Like other data types, objects can be declared as const:

▪ Once a const object has been constructed, its member variables
can’t be changed

▪ Can only invoke member functions that are labeled const

❖ You can declare a member function of a class as const

▪ This means that if cannot modify the object it was called on

• The compiler will treat member variables as const inside the
function at compile time

▪ If a member function doesn’t modify the object, mark it const!

36

CSE333, Summer 2023L09: References, Const, Classes

Class Definition (.h file)

37

#ifndef POINT_H_

#define POINT_H_

class Point {

 public:

 Point(const int x, const int y); // constructor

 int get_x() const { return x_; } // inline member function

 int get_y() const { return y_; } // inline member function

 double Distance(const Point& p) const; // member function

 void SetLocation(const int x, const int y); // member function

 private:

 int x_; // data member

 int y_; // data member

}; // class Point

#endif // POINT_H_

Point.h

STYLE
TIP

CSE333, Summer 2023L09: References, Const, Classes

Class Member Definitions (.cc file)

38

#include <cmath>

#include "Point.h"

Point::Point(const int x, const int y) {

 x_ = x;

 this->y_ = y; // "this->" is optional unless name conflicts

}

double Point::Distance(const Point& p) const {

 // We can access p’s x_ and y_ variables either through the

 // get_x(), get_y() accessor functions or the x_, y_ private

 // member variables directly, since we’re in a member

 // function of the same class.

 double distance = (x_ - p.get_x()) * (x_ - p.get_x());

 distance += (y_ - p.y_) * (y_ - p.y_);

 return sqrt(distance);

}

void Point::SetLocation(const int x, const int y) {

 x_ = x;

 y_ = y;

}

Point.cc

CSE333, Summer 2023L09: References, Const, Classes

Class Usage (.cc file)

39

#include <iostream>

#include <cstdlib>

#include "Point.h"

using namespace std;

int main(int argc, char** argv) {

 Point p1(1, 2); // allocate a new Point on the Stack

 Point p2(4, 6); // allocate a new Point on the Stack

 cout << "p1 is: (" << p1.get_x() << ", ";

 cout << p1.get_y() << ")" << endl;

 cout << "p2 is: (" << p2.get_x() << ", ";

 cout << p2.get_y() << ")" << endl;

 cout << "dist : " << p1.Distance(p2) << endl;

 return EXIT_SUCCESS;

}

usepoint.cc

CSE333, Summer 2023L09: References, Const, Classes

Reading Assignment

❖ Before next time, read the sections in C++ Primer covering
class constructors, copy constructors, assignment
(operator=), and destructors

▪ Ignore “move semantics” for now

▪ The table of contents and index are your friends…

40

	Slide 1: About how long did Exercise 4 take you?
	Slide 2: C++ References, Const, Classes CSE 333 Summer 2023
	Slide 3: Relevant Course Information (1/2)
	Slide 4: Relevant Course Information (2/2)
	Slide 5: Lecture Outline
	Slide 6: Pointers Reminder
	Slide 7: Pointers Reminder
	Slide 8: Pointers Reminder
	Slide 9: Pointers Reminder
	Slide 10: Pointers Reminder
	Slide 11: Pointers Reminder
	Slide 12: References
	Slide 13: References
	Slide 14: References
	Slide 15: References
	Slide 16: References
	Slide 17: References
	Slide 18: Pass-By-Reference
	Slide 19: Pass-By-Reference
	Slide 20: Pass-By-Reference
	Slide 21: Pass-By-Reference
	Slide 22: Pass-By-Reference
	Slide 23: Pass-By-Reference
	Slide 24: What is your anticipated lecture/section attendance modality?
	Slide 25: Lecture Outline
	Slide 26: const
	Slide 27: const and Pointers
	Slide 28: const and Pointers
	Slide 29: const and Pointers
	Slide 30: const Parameters
	Slide 31: What is your anticipated lecture/section attendance modality?
	Slide 32: When to Use References?
	Slide 33: Lecture Outline
	Slide 34: Classes
	Slide 35: Class Organization
	Slide 36: Const & Classes
	Slide 37: Class Definition (.h file)
	Slide 38: Class Member Definitions (.cc file)
	Slide 39: Class Usage (.cc file)
	Slide 40: Reading Assignment

