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Name a value that you feel is embedded in 
the C language.

(open-ended survey question)

By “value” we mean an adjective describing the relative 
worth, merit, or importance of something (e.g., loyalty, 
kindness), NOT a number or constant.
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Relevant Course Information (1/2)

❖ Exercise 4 released Monday, due next Monday

▪ Read a directory and open/copy text files found there

▪ Implement light versions of C std I/O functions using POSIX

❖ Homework 1 due tomorrow night (7/6)

▪ Can submit until Sunday for 2 late day tokens (weekends count as 
1 day)

▪ After all late day tokens are used, 10% penalties applied as 
“kindly” as possible on any HWs submitted late

❖ Homework 2 will be released Friday night (7/7)

▪ See Ed post #116 for partner sign-up & matching forms
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Relevant Course Information (2/2)

❖ Quiz 1 released next Monday (7/10)

▪ Will be administered on Gradescope, open @ 2pm and closes 
Wednesday @ 11:59pm

▪ Questions are short-answer, somewhat reflective in nature.

▪ Be comfortable with learning objectives and memory 
diagramming.

▪ We’ve tried to keep the quiz short, should be 30-45 min

• Please don’t spend 3 hours on this

▪ Academic Conduct Policy applies to all Quizzes as well

• Please don’t copy other’s work, do not use Chat-GPT

4



CSE333, Summer 2023L07:  System Calls & Makefiles

Lecture Outline

❖ System Calls (High-Level View)

❖ Make and Build Tools

❖ Makefile Basics

❖ C History

❖ C++ Preview
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OS: Abstraction Provider

❖ The OS is the “layer below”

▪ A module that your program can call (with system calls)

▪ Provides a powerful OS API – POSIX, Windows, etc.
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File System
• open(), read(), write(), close(), …

Network Stack
• connect(), listen(), read(), write(), ...

Virtual Memory
• brk(), shm_open(), …

Process Management
• fork(), wait(), nice(), …
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OS: Protection System

❖ OS isolates process from each other
▪ But permits controlled sharing between them

• Through shared name spaces (e.g., file names)

❖ OS isolates itself from processes
▪ Must prevent processes from accessing the 

hardware directly

❖ OS is allowed to access the hardware
▪ User-level processes run with the CPU 

(processor) in unprivileged mode

▪ The OS runs with the CPU in privileged mode

▪ User-level processes invoke system calls to 
safely enter the OS
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System Call Analogy

❖ The OS is a bank manager overseeing 
safety deposit boxes in the vault

▪ Is the only one allowed in the vault and has the keys
to the safety deposit boxes

❖ If a client wants to access a deposit box (i.e., add or 
remove items), they must request that the bank manager 
do it for them

▪ Takes time to locate and travel to box and find the right key

▪ Client must wait in the lobby while the bank manager accesses 
the box – prevents messing with requested box or other boxes

▪ Takes time to put box away, return from vault, and let client know 
that request was fulfilled
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System Calls Simplified Overview

❖ The operating system (OS) is a super complicated 
“program overseer” program for the computer

▪ The only software that is directly trusted with hardware access

❖ If a user process wants to access an OS feature, they must 
invoke a system call

▪ A system call involves context switching into the OS/kernel, which 
has some overhead

▪ The OS will handle hardware/special functionality directly (in 
privileged mode) while user processes wait and don’t touch 
anything themselves

▪ OS will eventually finish, return result to user process, and context 
switch back
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System Call Trace (high-level view)
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A CPU (thread of 
execution) is running user-

level code in Process A; 
the CPU is set to 

unprivileged mode.
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System Call Trace (high-level view)
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System Call Trace (high-level view)

12

Because the CPU 
executing the thread 
that’s in the OS is in 

privileged mode, it is able 
to use privileged 

instructions that interact 
directly with hardware 

devices like disks.
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System Call Trace (high-level view)
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servicing the system call, 

which might involve long waits 
as it interacts with HW, it:

(1) Sets the CPU back to 
unprivileged mode and 

(2) Returns out of the system 
call back to the user-level code 

in Process A.
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System Call Trace (high-level view)
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The process continues 
executing whatever 

code is next after the 
system call invocation.

Useful reference:  
CSPP § 8.1–8.3 
(the 351 book)
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“Library calls” on x86/Linux

❖ A more accurate picture:

▪ Consider a typical Linux process

▪ Its thread of execution can be in one 
of several places:

• In your program’s code

• In glibc, a shared library containing 
the C standard library, POSIX, 
support, and more

• In the Linux architecture-independent 
code

• In Linux x86-64 code
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“Library calls” on x86/Linux:  Option 1

❖ Some routines your program 
invokes may be entirely handled 
by glibc without involving the 
kernel

▪ e.g., strcmp() from stdio.h

▪ There is some initial overhead when 
invoking functions in dynamically 
linked libraries (during loading)

• But after symbols are resolved, 
invoking glibc routines is basically 
as fast as a function call within your 
program itself!
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“Library calls” on x86/Linux:  Option 2

❖ Some routines may be handled 
by glibc, but they in turn 
invoke Linux system calls

▪ e.g., POSIX wrappers around Linux 
syscalls

• POSIX readdir() invokes the 
underlying Linux readdir()

▪ e.g., C stdio functions that read 
and write from files

• fopen(), fclose(), fprintf() 
invoke underlying Linux open(), 
close(), write(), etc.
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“Library calls” on x86/Linux:  Option 3

❖ Your program can choose to 
directly invoke Linux system calls 
as well

▪ Nothing is forcing you to link with 
glibc and use it

▪ But relying on directly-invoked Linux 
system calls may make your 
program less portable across UNIX 
varieties
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strace

❖ A useful Linux utility that shows the sequence of system 
calls that a process makes:
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bash$ strace ls 2>&1 | less

execve("/usr/bin/ls", ["ls"], [/* 41 vars */]) = 0

brk(NULL)                               = 0x15aa000

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 

0x7f03bb741000

access("/etc/ld.so.preload", R_OK)      = -1 ENOENT (No such file or directory)

open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3

fstat(3, {st_mode=S_IFREG|0644, st_size=126570, ...}) = 0

mmap(NULL, 126570, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f03bb722000

close(3)                                = 0

open("/lib64/libselinux.so.1", O_RDONLY|O_CLOEXEC) = 3

read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\300j\0\0\0\0\0\0"..., 

832) = 832

fstat(3, {st_mode=S_IFREG|0755, st_size=155744, ...}) = 0

mmap(NULL, 2255216, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 

0x7f03bb2fa000

mprotect(0x7f03bb31e000, 2093056, PROT_NONE) = 0

mmap(0x7f03bb51d000, 8192, PROT_READ|PROT_WRITE, 

MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x23000) = 0x7f03bb51d000

... etc ...
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Lecture Outline

❖ System Calls (High-Level View)

❖ Make and Build Tools

❖ Makefile Basics

❖ C History

❖ C++ Preview
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“Real” Build Process

❖ On larger projects, you can’t or don’t want to have one big (set 
of) command(s) that are all run every time you change 
anything. To do things “smarter,” consider:
1) It could be worse: If gcc didn’t combine steps for you, you’d need to 

preprocess, compile, and link on your own (along with anything you 
used to generate the C files)

2) Source files could have multiple outputs (e.g., javadoc). You may 
have to type out the source file name(s) multiple times

3) You don’t want to have to document the build logic when you 
distribute source code; make it relatively simple for others to build

4) You don’t want to recompile everything every time you change 
something (especially if you have 105-107 files of source code)

❖ A script can handle 1-3 (use a variable for filenames for 2), but 
4 is trickier

21
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Building Software

❖ Programmers spend a lot of time “building”

▪ Creating programs from source code

▪ Both programs that they write and other people write

22

https://xkcd.com/303/ 

https://xkcd.com/303/
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Building Software

❖ Programmers spend a lot of time “building”

▪ Creating programs from source code

▪ Both programs that they write and other people write

❖ Programmers like to automate repetitive tasks

▪ Repetitive:  gcc -Wall -g -std=c17 -o widget foo.c bar.c baz.c

• Retype this every time:  😭

• Use up-arrow or history:  😐  (still retype after logout)

• Have an alias or bash script: 🙂

• Have a Makefile:   😊  (you’re ahead of us)
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make

❖ make is a classic program for controlling what gets 
(re)compiled and how
▪ Many other such programs exist (e.g., ant, maven, IDE “projects”)

❖ make has tons of fancy features, but only two basic ideas:

1) Scripts for executing commands

2) Dependencies for avoiding unnecessary work

❖ To avoid “just teaching make features” (boring and 
narrow), let’s focus more on the concepts…

24
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Recompilation Management

❖ The “theory” behind avoiding unnecessary compilation is 
a dependency dag (directed, acyclic graph)

❖ To create a target 𝑡, you need sources 𝑠1, 𝑠2, … , 𝑠𝑛 and a 
command 𝑐 that directly or indirectly uses the sources

▪ If 𝑡 is newer than every source (file-modification times), assume 
there is no reason to rebuild it

▪ Recursive building:  if some source 𝑠𝑖 is itself a target for some 
other sources, see if it needs to be rebuilt…

▪ Cycles “make no sense”!
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Theory Applied to C

❖ Compiling a .c creates a .o – the .o depends on the .c 
and all included files (.h, recursively/transitively)

26
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Theory Applied to C

❖ Compiling a .c creates a .o – the .o depends on the .c 
and all included files (.h, recursively/transitively)

❖ An archive (library, .a) depends on included .o files
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Theory Applied to C

❖ Compiling a .c creates a .o – the .o depends on the .c 
and all included files (.h, recursively/transitively)

❖ An archive (library, .a) depends on included .o files

❖ Creating an executable (“linking”) depends on .o files and 
archives
▪ Archives linked by -L<path> -l<name>  

(e.g., -L. -lfoo to get libfoo.a from current directory)
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Theory Applied to C

❖ If one .c file changes, just need to recreate one .o file, 
maybe a library, and re-link

❖ If a .h file changes, may need to rebuild more

❖ Many more possibilities!
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Lecture Outline

❖ System Calls (High-Level View)

❖ Make and Build Tools

❖ Makefile Basics

❖ C History

❖ C++ Preview
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make Basics

❖ A makefile contains a bunch of triples:

▪ Colon after target is required

▪ Command lines must start with a TAB, NOT SPACES

▪ Multiple commands for same target are executed in order

• Can split commands over multiple lines by ending lines with ‘\’

❖ Example:

31

foo.o: foo.c foo.h bar.h

 gcc -Wall -o foo.o -c foo.c

target: sources

 command← Tab →
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Using make

❖ Defaults:
▪ If no -f specified, use a file named Makefile in current dir

▪ If no target specified, will use the first one in the file

▪ Will interpret commands in your default shell

• Set SHELL variable in makefile to ensure

❖ Target execution:

▪ Check each source in the source list:

• If the source is a target in the makefile, then process it recursively

• If some source does not exist, then error

• If any source is newer than the target (or target does not exist), run 
command (presumably to update the target)

32

$ make -f <makefileName> target
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“Phony” Targets

❖ A make target whose command does not create a file of 
the target’s name (i.e., a “recipe”)

▪ As long as target file doesn’t exist, the command(s) will be 
executed because the target must be “remade”

❖ e.g., target clean is a convention to remove generated 
files to “start over” from just the source

❖ e.g., target all is a convention to build all “final 
products” in the makefile

▪ Lists all of the “final products” as sources

33

clean:

 rm foo.o bar.o baz.o widget *~
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“all” Example

34

all: prog B.class someLib.a  

 # notice no commands this time

prog: foo.o bar.o main.o

 gcc –o prog foo.o bar.o main.o

B.class: B.java

 javac B.java

someLib.a: foo.o baz.o

 ar r foo.o baz.o

foo.o: foo.c foo.h header1.h header2.h

 gcc -c -Wall foo.c

# similar targets for bar.o, main.o, baz.o, etc...

1

2

3

4

5 6

7 8
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make Variables

❖ You can define variables in a makefile:

▪ All values are strings of text, no “types”

▪ Variable names are case-sensitive and can’t contain ‘:’, ‘#’, ‘=’, or 
whitespace

❖ Example:

❖ Advantages:

▪ Easy to change things (especially in multiple commands)

• It’s common to use variables to hold lists of filenames

▪ Can also specify/overwrite variables on the command line:
(e.g., make CC=clang CFLAGS=-g) 35

CC = gcc

CFLAGS = -Wall -std=c17

OBJFILES = foo.o bar.o baz.o

widget: $(OBJFILES)

 $(CC) $(CFLAGS) -o widget $(OBJFILES)
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Makefile Writing Tips

❖ When creating a Makefile, first draw the dependencies!!!!

❖ C Dependency Rules:
▪ .c and .h files are never targets, only sources.

▪ Each .c file will be compiled into a corresponding .o file

• Header files will be implicitly used via #include

▪ Executables will typically be built from one or more .o file

❖ Good Conventions:
▪ Include a clean rule

▪ If you have more than one “final target,” include an all rule

▪ The first/top target should be your singular “final target” or all

36

STYLE
TIP

STYLE
TIP
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Writing a Makefile Example

❖ “talk” program (find files on web with lecture slides)

37

speak.cspeak.h shout.cshout.hmain.c

#include "speak.h"

#include "shout.h"

int main(int argc, char** argv) {…

#include "speak.h"

...

#include "speak.h"

#include "shout.h"

...

main.c

speak.c

shout.c
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Writing a Makefile Example

❖ “talk” program (find files on web with lecture slides)

38

speak.cspeak.h shout.cshout.hmain.c

speak.o shout.omain.o

talk
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Revenge of the Funny Characters

❖ Special variables:
▪ $@  for target name

▪ $^  for all sources

▪ $<  for left-most source

▪ Lots more! – see the documentation

❖ Examples:

39

# CC and CFLAGS defined above

widget: foo.o bar.o

 $(CC) $(CFLAGS) -o $@ $^

foo.o: foo.c foo.h bar.h

 $(CC) $(CFLAGS) -c $<
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And more…

❖ There are a lot of “built-in” rules – see documentation

❖ There are “suffix” rules and “pattern” rules

▪ Example:

❖ Remember that you can put any shell command – even 
whole scripts!

❖ You can repeat target names to add more dependencies

❖ Often this stuff is more useful for reading makefiles than 
writing your own (until some day…)

40

%.class: %.java

 javac $<  # we need the $< here
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Lecture Outline

❖ System Calls (High-Level View)

❖ Make and Build Tools

❖ Makefile Basics

❖ C History

❖ C++ Preview
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42
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Development of the C Language

❖ Created in 1972

▪ BCPL → B → C

▪ Designed specifically as a system programming language for Unix

• Unix was rewritten entirely in C (Version 4 in 1973)

❖ “Standardized” in 1978 with release of K&R Ed. 1

▪ From initial creation, developed
in terms of portability and type safety

❖ Formal standardization via American National 
Standards Institute (ANSI) in 1989 and International 
Organziation for Standardization (ISO) in 1990

▪ Non-portable portion of the Unix C library was the basis for the 
POSIX standard via IEEE

43
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Development of the C Language

❖ Development Context:

▪ Developed for the PDP-7/PDP-11

• Very limited memory available for program

▪ Improvements over B: data typing, performance, byte 
addressibility

▪ Developed in the context of operating system innovations 
(Multics, Unix)

• “Particularly oriented towards system programming, are small and 
compactly described, and are amenable to translation by simple 
compilers.”

• “By design, C provides constructs that map efficiently to typical 
machine instructions. It has found lasting use in applications 
previously coded in assembly language.”

❖ Who used computers and programming at the time?
44
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Development of the C Language

❖ Credits:

▪ Dennis Ritchie designed C

▪ Ken Thompson designed B and, with Ritchie, were the primary 
architects of UNIX (in assembly)

▪ Brian Kernighan helped Ritchie write K&R, the first 
“standardization” of the C language

❖ “The development of the C language” (https://dl.acm.org/doi/10.1145/155360.155580)

45
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https://dl.acm.org/doi/10.1145/155360.155580
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Principles of C

❖ Some commonly-held contemporary views:

▪ “Since C is relatively small, it can be described 
in small space and learned quickly.”

▪ “Shows what’s really happening.”

▪ “Close to the machine/hardware.”

▪ “Only the bare essentials.”

▪ “No one to help you.”

▪ “You’re on your own.”

▪ “I know what I’m doing, get out of my way.”

46
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Principles of C – Embedded Values

❖ Some commonly-held contemporary views:

▪ “Since C is relatively small, it can be described 
in small space and learned quickly.”

▪ “Shows what’s really happening.”

▪ “Close to the machine/hardware.”

▪ “Only the bare essentials.”

▪ “No one to help you.”

▪ “You’re on your own.”

▪ “I know what I’m doing, get out of my way.”

47

Rugged

Minimalistic

Individualistic
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Lecture Outline

❖ System Calls (High-Level View)

❖ Make and Build Tools

❖ Makefile Basics

❖ C History

❖ C++ Preview
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Programming Terminology Review

❖ Encapsulation and Abstraction:  Hiding implementation 
details (restricting access) and associating behaviors 
(methods) with data

❖ Polymorphism:  The provision of a single interface to 
entities of different types

❖ Generics:  Algorithms written in terms of types to-be-
specified-later
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Transitioning to C++

❖ Support for classes and objects! 🎉
▪ Polymorphism and inheritance

❖ Templates facilitate generic data types

❖ Specialized casts to increase type safety

❖ Explicit namespaces allow for duplicate names without 
collisions

❖ A huge C++ standard library

▪ Including generic containers & algorithms, a string class, streams

❖ Exceptions for error handling

▪ Except not widely used…
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How to Think About C++
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A quick walkthrough of the system call details on an IA32 
(i.e., 32-bit x86) Linux system that highlights the transitions 
in privilege mode and where different pieces of code are 
accessed.

These slides expand on material covered today but won’t 
be needed for CSE333; they become relevant if you take 
CSE451 and need to implement system calls.
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Details on x86/Linux

❖ Let’s walk through how a Linux 
system call actually works

▪ We’ll assume 32-bit x86 using the 
modern SYSENTER / SYSEXIT x86 
instructions

• x86-64 code is similar, though details 
always change over time, so take this 
as an example – not a debugging 
guide
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System Calls on x86/Linux

Remember our 
process address 
space picture?

▪ Let’s add some 
details:
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System Calls on x86/Linux

Process is executing your 
program code
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System Calls on x86/Linux

Process calls into a 
glibc function

▪ e.g., fopen()

▪ We’ll ignore the 
messy details of
loading/linking
shared libraries
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System Calls on x86/Linux

glibc begins the 
process of invoking a 
Linux system call

▪ glibc’s 
fopen() likely
invokes Linux’s
open() system 
call

▪ Puts the system call # 
and arguments into 
registers

▪ Uses the call x86 
instruction to call into 
the routine 
__kernel_vsyscall 
located in linux-
gate.so
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System Calls on x86/Linux

linux-gate.so is a 
vdso

▪ A virtual 
dynamically-linked 
shared 
object

▪ Is a kernel-provided 
shared library that is 
plunked into a process’ 
address space

▪ Provides the intricate 
machine code needed to 
trigger a system call
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System Calls on x86/Linux

linux-gate.so 
eventually invokes 
the SYSENTER x86 
instruction

▪ SYSENTER is x86’s “fast 
system call” instruction

• Causes the CPU to raise 
its privilege level

• Traps into the Linux 
kernel by changing the 
SP, IP to a previously-
determined location

• Changes some 
segmentation-related 
registers (see CSE451)
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System Calls on x86/Linux

The kernel begins 
executing code at
the SYSENTER 
entry point

▪ Is in the architecture-
dependent part of Linux

▪ It’s job is to:

• Look up the system call 
number in a system call 
dispatch table

• Call into the address 
stored in that table entry; 
this is Linux’s system call 
handler

– For open(), the 
handler is named 
sys_open, and is 
system call #5
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System Calls on x86/Linux

The system call 
handler executes

▪ What it does is
system-call specific

▪ It may take a long time to 
execute, especially if it 
has to interact with 
hardware

• Linux may choose to 
context switch the CPU 
to a different runnable 
process
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System Calls on x86/Linux

Eventually, the 
system call handler
finishes

▪ Returns back to the 
system call entry point

• Places the system call’s 
return value in the 
appropriate register

• Calls SYSEXIT to return 
to the user-level code
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System Calls on x86/Linux

SYSEXIT transitions the 
processor back to user-
mode code

▪ Restores the
IP, SP to 
user-land values

▪ Sets the CPU 
back to 
unprivileged mode

▪ Changes some 
segmentation-related 
registers (see CSE451)

▪ Returns the processor 
back to glibc
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System Calls on x86/Linux

glibc continues to 
execute

▪ Might execute more 
system calls

▪ Eventually 
returns back to 
your program code
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