
CSE333, Summer 2023L07:  System Calls & Makefiles

1

pollev.com/cse333

Name a value that you feel is embedded in 
the C language.

(open-ended survey question)

By “value” we mean an adjective describing the relative 
worth, merit, or importance of something (e.g., loyalty, 
kindness), NOT a number or constant.



CSE333, Summer 2023L07:  System Calls & Makefiles

System Calls, Makefiles
CSE 333 Summer 2023

Instructor:  Timmy Yang

Teaching Assistants:

Jennifer Xu Leanna Nguyen Pedro Amarante

Sara Deutscher Tanmay Shah



CSE333, Summer 2023L07:  System Calls & Makefiles

Relevant Course Information (1/2)

❖ Exercise 4 released Monday, due next Monday

▪ Read a directory and open/copy text files found there

▪ Implement light versions of C std I/O functions using POSIX

❖ Homework 1 due tomorrow night (7/6)

▪ Can submit until Sunday for 2 late day tokens (weekends count as 
1 day)

▪ After all late day tokens are used, 10% penalties applied as 
“kindly” as possible on any HWs submitted late

❖ Homework 2 will be released Friday night (7/7)

▪ See Ed post #116 for partner sign-up & matching forms

3



CSE333, Summer 2023L07:  System Calls & Makefiles

Relevant Course Information (2/2)

❖ Quiz 1 released next Monday (7/10)

▪ Will be administered on Gradescope, open @ 2pm and closes 
Wednesday @ 11:59pm

▪ Questions are short-answer, somewhat reflective in nature.

▪ Be comfortable with learning objectives and memory 
diagramming.

▪ We’ve tried to keep the quiz short, should be 30-45 min

• Please don’t spend 3 hours on this

▪ Academic Conduct Policy applies to all Quizzes as well

• Please don’t copy other’s work, do not use Chat-GPT

4



CSE333, Summer 2023L07:  System Calls & Makefiles

Lecture Outline

❖ System Calls (High-Level View)

❖ Make and Build Tools

❖ Makefile Basics

❖ C History

❖ C++ Preview

5



CSE333, Summer 2023L07:  System Calls & Makefiles

OS: Abstraction Provider

❖ The OS is the “layer below”

▪ A module that your program can call (with system calls)

▪ Provides a powerful OS API – POSIX, Windows, etc.

6

a process running 
your program

OS

OS
API

fi
le

 s
ys

te
m

n
et

w
o

rk
 s

ta
ck

vi
rt

u
al

 m
em

o
ry

p
ro

ce
ss

 m
gm

t.

…
 e

tc
 …

File System
• open(), read(), write(), close(), …

Network Stack
• connect(), listen(), read(), write(), ...

Virtual Memory
• brk(), shm_open(), …

Process Management
• fork(), wait(), nice(), …



CSE333, Summer 2023L07:  System Calls & Makefiles

OS: Protection System

❖ OS isolates process from each other
▪ But permits controlled sharing between them

• Through shared name spaces (e.g., file names)

❖ OS isolates itself from processes
▪ Must prevent processes from accessing the 

hardware directly

❖ OS is allowed to access the hardware
▪ User-level processes run with the CPU 

(processor) in unprivileged mode

▪ The OS runs with the CPU in privileged mode

▪ User-level processes invoke system calls to 
safely enter the OS

7

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(t

ru
st

ed
)

There are special cases 

where “super-user” 

permissions granted



CSE333, Summer 2023L07:  System Calls & Makefiles

System Call Analogy

❖ The OS is a bank manager overseeing 
safety deposit boxes in the vault

▪ Is the only one allowed in the vault and has the keys
to the safety deposit boxes

❖ If a client wants to access a deposit box (i.e., add or 
remove items), they must request that the bank manager 
do it for them

▪ Takes time to locate and travel to box and find the right key

▪ Client must wait in the lobby while the bank manager accesses 
the box – prevents messing with requested box or other boxes

▪ Takes time to put box away, return from vault, and let client know 
that request was fulfilled

8



CSE333, Summer 2023L07:  System Calls & Makefiles

System Calls Simplified Overview

❖ The operating system (OS) is a super complicated 
“program overseer” program for the computer

▪ The only software that is directly trusted with hardware access

❖ If a user process wants to access an OS feature, they must 
invoke a system call

▪ A system call involves context switching into the OS/kernel, which 
has some overhead

▪ The OS will handle hardware/special functionality directly (in 
privileged mode) while user processes wait and don’t touch 
anything themselves

▪ OS will eventually finish, return result to user process, and context 
switch back

9



CSE333, Summer 2023L07:  System Calls & Makefiles

System Call Trace (high-level view)

10

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(t

ru
st

ed
)

A CPU (thread of 
execution) is running user-

level code in Process A; 
the CPU is set to 

unprivileged mode.



CSE333, Summer 2023L07:  System Calls & Makefiles

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(t

ru
st

ed
)

System Call Trace (high-level view)

11

Code in Process A invokes 
a system call; the 

hardware then sets the 
CPU to privileged mode 

and transfers control the 
OS, which invokes the 

appropriate system call 
handler.

sy
st

em
 c

al
l



CSE333, Summer 2023L07:  System Calls & Makefiles

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(t

ru
st

ed
)

System Call Trace (high-level view)

12

Because the CPU 
executing the thread 
that’s in the OS is in 

privileged mode, it is able 
to use privileged 

instructions that interact 
directly with hardware 

devices like disks.



CSE333, Summer 2023L07:  System Calls & Makefiles

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(t

ru
st

ed
)

System Call Trace (high-level view)

13

sy
st

em
 c

al
l r

et
u

rn

Once the OS has finished 
servicing the system call, 

which might involve long waits 
as it interacts with HW, it:

(1) Sets the CPU back to 
unprivileged mode and 

(2) Returns out of the system 
call back to the user-level code 

in Process A.



CSE333, Summer 2023L07:  System Calls & Makefiles

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(t

ru
st

ed
)

System Call Trace (high-level view)

14

The process continues 
executing whatever 

code is next after the 
system call invocation.

Useful reference:  
CSPP § 8.1–8.3 
(the 351 book)



CSE333, Summer 2023L07:  System Calls & Makefiles

“Library calls” on x86/Linux

❖ A more accurate picture:

▪ Consider a typical Linux process

▪ Its thread of execution can be in one 
of several places:

• In your program’s code

• In glibc, a shared library containing 
the C standard library, POSIX, 
support, and more

• In the Linux architecture-independent 
code

• In Linux x86-64 code

15

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux
system calls

Linux kernel

Your program



CSE333, Summer 2023L07:  System Calls & Makefiles

“Library calls” on x86/Linux:  Option 1

❖ Some routines your program 
invokes may be entirely handled 
by glibc without involving the 
kernel

▪ e.g., strcmp() from stdio.h

▪ There is some initial overhead when 
invoking functions in dynamically 
linked libraries (during loading)

• But after symbols are resolved, 
invoking glibc routines is basically 
as fast as a function call within your 
program itself!

16

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux kernel

Your program



CSE333, Summer 2023L07:  System Calls & Makefiles

“Library calls” on x86/Linux:  Option 2

❖ Some routines may be handled 
by glibc, but they in turn 
invoke Linux system calls

▪ e.g., POSIX wrappers around Linux 
syscalls

• POSIX readdir() invokes the 
underlying Linux readdir()

▪ e.g., C stdio functions that read 
and write from files

• fopen(), fclose(), fprintf() 
invoke underlying Linux open(), 
close(), write(), etc.

17

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux kernel

Your program



CSE333, Summer 2023L07:  System Calls & Makefiles

“Library calls” on x86/Linux:  Option 3

❖ Your program can choose to 
directly invoke Linux system calls 
as well

▪ Nothing is forcing you to link with 
glibc and use it

▪ But relying on directly-invoked Linux 
system calls may make your 
program less portable across UNIX 
varieties

18

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux kernel

Your program



CSE333, Summer 2023L07:  System Calls & Makefiles

strace

❖ A useful Linux utility that shows the sequence of system 
calls that a process makes:

19

bash$ strace ls 2>&1 | less

execve("/usr/bin/ls", ["ls"], [/* 41 vars */]) = 0

brk(NULL)                               = 0x15aa000

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 

0x7f03bb741000

access("/etc/ld.so.preload", R_OK)      = -1 ENOENT (No such file or directory)

open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3

fstat(3, {st_mode=S_IFREG|0644, st_size=126570, ...}) = 0

mmap(NULL, 126570, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f03bb722000

close(3)                                = 0

open("/lib64/libselinux.so.1", O_RDONLY|O_CLOEXEC) = 3

read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\300j\0\0\0\0\0\0"..., 

832) = 832

fstat(3, {st_mode=S_IFREG|0755, st_size=155744, ...}) = 0

mmap(NULL, 2255216, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 

0x7f03bb2fa000

mprotect(0x7f03bb31e000, 2093056, PROT_NONE) = 0

mmap(0x7f03bb51d000, 8192, PROT_READ|PROT_WRITE, 

MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x23000) = 0x7f03bb51d000

... etc ...



CSE333, Summer 2023L07:  System Calls & Makefiles

Lecture Outline

❖ System Calls (High-Level View)

❖ Make and Build Tools

❖ Makefile Basics

❖ C History

❖ C++ Preview

20



CSE333, Summer 2023L07:  System Calls & Makefiles

“Real” Build Process

❖ On larger projects, you can’t or don’t want to have one big (set 
of) command(s) that are all run every time you change 
anything. To do things “smarter,” consider:
1) It could be worse: If gcc didn’t combine steps for you, you’d need to 

preprocess, compile, and link on your own (along with anything you 
used to generate the C files)

2) Source files could have multiple outputs (e.g., javadoc). You may 
have to type out the source file name(s) multiple times

3) You don’t want to have to document the build logic when you 
distribute source code; make it relatively simple for others to build

4) You don’t want to recompile everything every time you change 
something (especially if you have 105-107 files of source code)

❖ A script can handle 1-3 (use a variable for filenames for 2), but 
4 is trickier

21



CSE333, Summer 2023L07:  System Calls & Makefiles

Building Software

❖ Programmers spend a lot of time “building”

▪ Creating programs from source code

▪ Both programs that they write and other people write

22

https://xkcd.com/303/ 

https://xkcd.com/303/


CSE333, Summer 2023L07:  System Calls & Makefiles

Building Software

❖ Programmers spend a lot of time “building”

▪ Creating programs from source code

▪ Both programs that they write and other people write

❖ Programmers like to automate repetitive tasks

▪ Repetitive:  gcc -Wall -g -std=c17 -o widget foo.c bar.c baz.c

• Retype this every time:  😭

• Use up-arrow or history:  😐  (still retype after logout)

• Have an alias or bash script: 🙂

• Have a Makefile:   😊  (you’re ahead of us)

23



CSE333, Summer 2023L07:  System Calls & Makefiles

make

❖ make is a classic program for controlling what gets 
(re)compiled and how
▪ Many other such programs exist (e.g., ant, maven, IDE “projects”)

❖ make has tons of fancy features, but only two basic ideas:

1) Scripts for executing commands

2) Dependencies for avoiding unnecessary work

❖ To avoid “just teaching make features” (boring and 
narrow), let’s focus more on the concepts…

24



CSE333, Summer 2023L07:  System Calls & Makefiles

Recompilation Management

❖ The “theory” behind avoiding unnecessary compilation is 
a dependency dag (directed, acyclic graph)

❖ To create a target 𝑡, you need sources 𝑠1, 𝑠2, … , 𝑠𝑛 and a 
command 𝑐 that directly or indirectly uses the sources

▪ If 𝑡 is newer than every source (file-modification times), assume 
there is no reason to rebuild it

▪ Recursive building:  if some source 𝑠𝑖 is itself a target for some 
other sources, see if it needs to be rebuilt…

▪ Cycles “make no sense”!

25



CSE333, Summer 2023L07:  System Calls & Makefiles

Theory Applied to C

❖ Compiling a .c creates a .o – the .o depends on the .c 
and all included files (.h, recursively/transitively)

26

Source files

Object files

foo.c bar.cfoo.h

foo.o bar.olibZ.a

bar

Statically-linked
libraries

Executable



CSE333, Summer 2023L07:  System Calls & Makefiles

Theory Applied to C

❖ Compiling a .c creates a .o – the .o depends on the .c 
and all included files (.h, recursively/transitively)

❖ An archive (library, .a) depends on included .o files

27

Source files

Object files

foo.c bar.cfoo.h

foo.o bar.olibZ.a

bar

Statically-linked
libraries

Executable



CSE333, Summer 2023L07:  System Calls & Makefiles

Theory Applied to C

❖ Compiling a .c creates a .o – the .o depends on the .c 
and all included files (.h, recursively/transitively)

❖ An archive (library, .a) depends on included .o files

❖ Creating an executable (“linking”) depends on .o files and 
archives
▪ Archives linked by -L<path> -l<name>  

(e.g., -L. -lfoo to get libfoo.a from current directory)

28

Source files

Object files

foo.c bar.cfoo.h

foo.o bar.olibZ.a

bar

Statically-linked
libraries

Executable



CSE333, Summer 2023L07:  System Calls & Makefiles

Theory Applied to C

❖ If one .c file changes, just need to recreate one .o file, 
maybe a library, and re-link

❖ If a .h file changes, may need to rebuild more

❖ Many more possibilities!

29

Source files

Object files

foo.c bar.cfoo.h

foo.o bar.olibZ.a

bar

Statically-linked
libraries

Executable



CSE333, Summer 2023L07:  System Calls & Makefiles

Lecture Outline

❖ System Calls (High-Level View)

❖ Make and Build Tools

❖ Makefile Basics

❖ C History

❖ C++ Preview

30



CSE333, Summer 2023L07:  System Calls & Makefiles

make Basics

❖ A makefile contains a bunch of triples:

▪ Colon after target is required

▪ Command lines must start with a TAB, NOT SPACES

▪ Multiple commands for same target are executed in order

• Can split commands over multiple lines by ending lines with ‘\’

❖ Example:

31

foo.o: foo.c foo.h bar.h

 gcc -Wall -o foo.o -c foo.c

target: sources

 command← Tab →



CSE333, Summer 2023L07:  System Calls & Makefiles

Using make

❖ Defaults:
▪ If no -f specified, use a file named Makefile in current dir

▪ If no target specified, will use the first one in the file

▪ Will interpret commands in your default shell

• Set SHELL variable in makefile to ensure

❖ Target execution:

▪ Check each source in the source list:

• If the source is a target in the makefile, then process it recursively

• If some source does not exist, then error

• If any source is newer than the target (or target does not exist), run 
command (presumably to update the target)

32

$ make -f <makefileName> target



CSE333, Summer 2023L07:  System Calls & Makefiles

“Phony” Targets

❖ A make target whose command does not create a file of 
the target’s name (i.e., a “recipe”)

▪ As long as target file doesn’t exist, the command(s) will be 
executed because the target must be “remade”

❖ e.g., target clean is a convention to remove generated 
files to “start over” from just the source

❖ e.g., target all is a convention to build all “final 
products” in the makefile

▪ Lists all of the “final products” as sources

33

clean:

 rm foo.o bar.o baz.o widget *~



CSE333, Summer 2023L07:  System Calls & Makefiles

“all” Example

34

all: prog B.class someLib.a  

 # notice no commands this time

prog: foo.o bar.o main.o

 gcc –o prog foo.o bar.o main.o

B.class: B.java

 javac B.java

someLib.a: foo.o baz.o

 ar r foo.o baz.o

foo.o: foo.c foo.h header1.h header2.h

 gcc -c -Wall foo.c

# similar targets for bar.o, main.o, baz.o, etc...

1

2

3

4

5 6

7 8



CSE333, Summer 2023L07:  System Calls & Makefiles

make Variables

❖ You can define variables in a makefile:

▪ All values are strings of text, no “types”

▪ Variable names are case-sensitive and can’t contain ‘:’, ‘#’, ‘=’, or 
whitespace

❖ Example:

❖ Advantages:

▪ Easy to change things (especially in multiple commands)

• It’s common to use variables to hold lists of filenames

▪ Can also specify/overwrite variables on the command line:
(e.g., make CC=clang CFLAGS=-g) 35

CC = gcc

CFLAGS = -Wall -std=c17

OBJFILES = foo.o bar.o baz.o

widget: $(OBJFILES)

 $(CC) $(CFLAGS) -o widget $(OBJFILES)



CSE333, Summer 2023L07:  System Calls & Makefiles

Makefile Writing Tips

❖ When creating a Makefile, first draw the dependencies!!!!

❖ C Dependency Rules:
▪ .c and .h files are never targets, only sources.

▪ Each .c file will be compiled into a corresponding .o file

• Header files will be implicitly used via #include

▪ Executables will typically be built from one or more .o file

❖ Good Conventions:
▪ Include a clean rule

▪ If you have more than one “final target,” include an all rule

▪ The first/top target should be your singular “final target” or all

36

STYLE
TIP

STYLE
TIP



CSE333, Summer 2023L07:  System Calls & Makefiles

Writing a Makefile Example

❖ “talk” program (find files on web with lecture slides)

37

speak.cspeak.h shout.cshout.hmain.c

#include "speak.h"

#include "shout.h"

int main(int argc, char** argv) {…

#include "speak.h"

...

#include "speak.h"

#include "shout.h"

...

main.c

speak.c

shout.c



CSE333, Summer 2023L07:  System Calls & Makefiles

Writing a Makefile Example

❖ “talk” program (find files on web with lecture slides)

38

speak.cspeak.h shout.cshout.hmain.c

speak.o shout.omain.o

talk



CSE333, Summer 2023L07:  System Calls & Makefiles

Revenge of the Funny Characters

❖ Special variables:
▪ $@  for target name

▪ $^  for all sources

▪ $<  for left-most source

▪ Lots more! – see the documentation

❖ Examples:

39

# CC and CFLAGS defined above

widget: foo.o bar.o

 $(CC) $(CFLAGS) -o $@ $^

foo.o: foo.c foo.h bar.h

 $(CC) $(CFLAGS) -c $<



CSE333, Summer 2023L07:  System Calls & Makefiles

And more…

❖ There are a lot of “built-in” rules – see documentation

❖ There are “suffix” rules and “pattern” rules

▪ Example:

❖ Remember that you can put any shell command – even 
whole scripts!

❖ You can repeat target names to add more dependencies

❖ Often this stuff is more useful for reading makefiles than 
writing your own (until some day…)

40

%.class: %.java

 javac $<  # we need the $< here



CSE333, Summer 2023L07:  System Calls & Makefiles

Lecture Outline

❖ System Calls (High-Level View)

❖ Make and Build Tools

❖ Makefile Basics

❖ C History

❖ C++ Preview

41



CSE333, Summer 2023L07:  System Calls & Makefiles

42



CSE333, Summer 2023L07:  System Calls & Makefiles

Development of the C Language

❖ Created in 1972

▪ BCPL → B → C

▪ Designed specifically as a system programming language for Unix

• Unix was rewritten entirely in C (Version 4 in 1973)

❖ “Standardized” in 1978 with release of K&R Ed. 1

▪ From initial creation, developed
in terms of portability and type safety

❖ Formal standardization via American National 
Standards Institute (ANSI) in 1989 and International 
Organziation for Standardization (ISO) in 1990

▪ Non-portable portion of the Unix C library was the basis for the 
POSIX standard via IEEE

43



CSE333, Summer 2023L07:  System Calls & Makefiles

Development of the C Language

❖ Development Context:

▪ Developed for the PDP-7/PDP-11

• Very limited memory available for program

▪ Improvements over B: data typing, performance, byte 
addressibility

▪ Developed in the context of operating system innovations 
(Multics, Unix)

• “Particularly oriented towards system programming, are small and 
compactly described, and are amenable to translation by simple 
compilers.”

• “By design, C provides constructs that map efficiently to typical 
machine instructions. It has found lasting use in applications 
previously coded in assembly language.”

❖ Who used computers and programming at the time?
44



CSE333, Summer 2023L07:  System Calls & Makefiles

Development of the C Language

❖ Credits:

▪ Dennis Ritchie designed C

▪ Ken Thompson designed B and, with Ritchie, were the primary 
architects of UNIX (in assembly)

▪ Brian Kernighan helped Ritchie write K&R, the first 
“standardization” of the C language

❖ “The development of the C language” (https://dl.acm.org/doi/10.1145/155360.155580)

45

Dennis
Ritchie

Ken
Thompson

Brian
Kernighan

https://dl.acm.org/doi/10.1145/155360.155580


CSE333, Summer 2023L07:  System Calls & Makefiles

Principles of C

❖ Some commonly-held contemporary views:

▪ “Since C is relatively small, it can be described 
in small space and learned quickly.”

▪ “Shows what’s really happening.”

▪ “Close to the machine/hardware.”

▪ “Only the bare essentials.”

▪ “No one to help you.”

▪ “You’re on your own.”

▪ “I know what I’m doing, get out of my way.”

46



CSE333, Summer 2023L07:  System Calls & Makefiles

Principles of C – Embedded Values

❖ Some commonly-held contemporary views:

▪ “Since C is relatively small, it can be described 
in small space and learned quickly.”

▪ “Shows what’s really happening.”

▪ “Close to the machine/hardware.”

▪ “Only the bare essentials.”

▪ “No one to help you.”

▪ “You’re on your own.”

▪ “I know what I’m doing, get out of my way.”

47

Rugged

Minimalistic

Individualistic



CSE333, Summer 2023L07:  System Calls & Makefiles

Lecture Outline

❖ System Calls (High-Level View)

❖ Make and Build Tools

❖ Makefile Basics

❖ C History

❖ C++ Preview

48



CSE333, Summer 2023L07:  System Calls & Makefiles

Programming Terminology Review

❖ Encapsulation and Abstraction:  Hiding implementation 
details (restricting access) and associating behaviors 
(methods) with data

❖ Polymorphism:  The provision of a single interface to 
entities of different types

❖ Generics:  Algorithms written in terms of types to-be-
specified-later

49



CSE333, Summer 2023L07:  System Calls & Makefiles

Transitioning to C++

❖ Support for classes and objects! 🎉
▪ Polymorphism and inheritance

❖ Templates facilitate generic data types

❖ Specialized casts to increase type safety

❖ Explicit namespaces allow for duplicate names without 
collisions

❖ A huge C++ standard library

▪ Including generic containers & algorithms, a string class, streams

❖ Exceptions for error handling

▪ Except not widely used…

50



CSE333, Summer 2023L07:  System Calls & Makefiles

How to Think About C++

63

Set of styles 
and ways to 

use C++

Set of styles 
and ways to 

use C

Good styles 
and robust 
engineering 

practices

Style 
guides



CSE333, Summer 2023L07:  System Calls & Makefiles

A quick walkthrough of the system call details on an IA32 
(i.e., 32-bit x86) Linux system that highlights the transitions 
in privilege mode and where different pieces of code are 
accessed.

These slides expand on material covered today but won’t 
be needed for CSE333; they become relevant if you take 
CSE451 and need to implement system calls.

65



CSE333, Summer 2023L07:  System Calls & Makefiles

Details on x86/Linux

❖ Let’s walk through how a Linux 
system call actually works

▪ We’ll assume 32-bit x86 using the 
modern SYSENTER / SYSEXIT x86 
instructions

• x86-64 code is similar, though details 
always change over time, so take this 
as an example – not a debugging 
guide

66

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux kernel

Your program



CSE333, Summer 2023L07:  System Calls & Makefiles

System Calls on x86/Linux

Remember our 
process address 
space picture?

▪ Let’s add some 
details:

67

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack



CSE333, Summer 2023L07:  System Calls & Makefiles

System Calls on x86/Linux

Process is executing your 
program code

68

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

SP

IP

unpriv



CSE333, Summer 2023L07:  System Calls & Makefiles

System Calls on x86/Linux

Process calls into a 
glibc function

▪ e.g., fopen()

▪ We’ll ignore the 
messy details of
loading/linking
shared libraries

69

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

unpriv

SP

IP



CSE333, Summer 2023L07:  System Calls & Makefiles

System Calls on x86/Linux

glibc begins the 
process of invoking a 
Linux system call

▪ glibc’s 
fopen() likely
invokes Linux’s
open() system 
call

▪ Puts the system call # 
and arguments into 
registers

▪ Uses the call x86 
instruction to call into 
the routine 
__kernel_vsyscall 
located in linux-
gate.so

70

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

unpriv

SP

IP



CSE333, Summer 2023L07:  System Calls & Makefiles

System Calls on x86/Linux

linux-gate.so is a 
vdso

▪ A virtual 
dynamically-linked 
shared 
object

▪ Is a kernel-provided 
shared library that is 
plunked into a process’ 
address space

▪ Provides the intricate 
machine code needed to 
trigger a system call

71

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

unpriv

SP

IP



CSE333, Summer 2023L07:  System Calls & Makefiles

System Calls on x86/Linux

linux-gate.so 
eventually invokes 
the SYSENTER x86 
instruction

▪ SYSENTER is x86’s “fast 
system call” instruction

• Causes the CPU to raise 
its privilege level

• Traps into the Linux 
kernel by changing the 
SP, IP to a previously-
determined location

• Changes some 
segmentation-related 
registers (see CSE451)

72

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

priv

SP
IP



CSE333, Summer 2023L07:  System Calls & Makefiles

System Calls on x86/Linux

The kernel begins 
executing code at
the SYSENTER 
entry point

▪ Is in the architecture-
dependent part of Linux

▪ It’s job is to:

• Look up the system call 
number in a system call 
dispatch table

• Call into the address 
stored in that table entry; 
this is Linux’s system call 
handler

– For open(), the 
handler is named 
sys_open, and is 
system call #5

73

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

priv

SP
IP



CSE333, Summer 2023L07:  System Calls & Makefiles

System Calls on x86/Linux

The system call 
handler executes

▪ What it does is
system-call specific

▪ It may take a long time to 
execute, especially if it 
has to interact with 
hardware

• Linux may choose to 
context switch the CPU 
to a different runnable 
process

74

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

priv

SP
IP



CSE333, Summer 2023L07:  System Calls & Makefiles

System Calls on x86/Linux

Eventually, the 
system call handler
finishes

▪ Returns back to the 
system call entry point

• Places the system call’s 
return value in the 
appropriate register

• Calls SYSEXIT to return 
to the user-level code

75

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

priv

SP
IP



CSE333, Summer 2023L07:  System Calls & Makefiles

System Calls on x86/Linux

SYSEXIT transitions the 
processor back to user-
mode code

▪ Restores the
IP, SP to 
user-land values

▪ Sets the CPU 
back to 
unprivileged mode

▪ Changes some 
segmentation-related 
registers (see CSE451)

▪ Returns the processor 
back to glibc

76

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

unpriv

SP

IP



CSE333, Summer 2023L07:  System Calls & Makefiles

System Calls on x86/Linux

glibc continues to 
execute

▪ Might execute more 
system calls

▪ Eventually 
returns back to 
your program code

77

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

SP

IP

unpriv


	Slide 1: Name a value that you feel is embedded in the C language.
	Slide 2: System Calls, Makefiles CSE 333 Summer 2023
	Slide 3: Relevant Course Information (1/2)
	Slide 4: Relevant Course Information (2/2)
	Slide 5: Lecture Outline
	Slide 6: OS: Abstraction Provider
	Slide 7: OS: Protection System
	Slide 8: System Call Analogy
	Slide 9: System Calls Simplified Overview
	Slide 10: System Call Trace (high-level view)
	Slide 11: System Call Trace (high-level view)
	Slide 12: System Call Trace (high-level view)
	Slide 13: System Call Trace (high-level view)
	Slide 14: System Call Trace (high-level view)
	Slide 15: “Library calls” on x86/Linux
	Slide 16: “Library calls” on x86/Linux:  Option 1
	Slide 17: “Library calls” on x86/Linux:  Option 2
	Slide 18: “Library calls” on x86/Linux:  Option 3
	Slide 19: strace
	Slide 20: Lecture Outline
	Slide 21: “Real” Build Process
	Slide 22: Building Software
	Slide 23: Building Software
	Slide 24: make
	Slide 25: Recompilation Management
	Slide 26: Theory Applied to C
	Slide 27: Theory Applied to C
	Slide 28: Theory Applied to C
	Slide 29: Theory Applied to C
	Slide 30: Lecture Outline
	Slide 31: make Basics
	Slide 32: Using make
	Slide 33: “Phony” Targets
	Slide 34: “all” Example
	Slide 35: make Variables
	Slide 36: Makefile Writing Tips
	Slide 37: Writing a Makefile Example
	Slide 38: Writing a Makefile Example
	Slide 39: Revenge of the Funny Characters
	Slide 40: And more…
	Slide 41: Lecture Outline
	Slide 42
	Slide 43: Development of the C Language
	Slide 44: Development of the C Language
	Slide 45: Development of the C Language
	Slide 46: Principles of C
	Slide 47: Principles of C – Embedded Values
	Slide 48: Lecture Outline
	Slide 49: Programming Terminology Review
	Slide 50: Transitioning to C++
	Slide 63: How to Think About C++
	Slide 65
	Slide 66: Details on x86/Linux
	Slide 67: System Calls on x86/Linux
	Slide 68: System Calls on x86/Linux
	Slide 69: System Calls on x86/Linux
	Slide 70: System Calls on x86/Linux
	Slide 71: System Calls on x86/Linux
	Slide 72: System Calls on x86/Linux
	Slide 73: System Calls on x86/Linux
	Slide 74: System Calls on x86/Linux
	Slide 75: System Calls on x86/Linux
	Slide 76: System Calls on x86/Linux
	Slide 77: System Calls on x86/Linux

