
CSE333, Summer 2023L06: File I/O

1

pollev.com/cse333

About how long did Exercise 3 take you?

A. [0, 2) hours
B. [2, 4) hours
C. [4, 6) hours
D. [6, 8) hours
E. 8+ Hours
F. I didn’t submit / I prefer not to say

CSE333, Summer 2023L06: File I/O

File I/O: Cstdio, Buffering, POSIX
CSE 333 Summer 2023

Instructor: Timmy Yang

Teaching Assistants:

Jennifer Xu Leanna Nguyen Pedro Amarante

Sara Deutscher Tanmay Shah

CSE333, Summer 2023L06: File I/O

Relevant Course Information (1/2)

❖ Exercise 4 posted today, due next Monday (7/10)

▪ Longest exercise and HW1 is due; Exercise 5 will be released on
Friday, due next Wednesday (7/12)

❖ Homework 1 due Thursday night (7/6)

▪ Clean up “to do” comments, but leave “STEP #” markers

▪ Graded not just on correctness, also code quality

▪ OH get crowded – come prepared to describe your incorrect
behavior and what you think the issue is and what you’ve tried

▪ Late days: don’t tag hw1-final until you are really ready

• Please use them if you need to!

❖ Homework 2 to be released on Friday (7/7)

▪ Partner declaration form and matching form will be released later
this week

3

CSE333, Summer 2023L06: File I/O

Relevant Course Information (2/2)

❖ Quiz 1 open next Monday (7/10)

▪ Will be open from Mon. (7/10) @ 2pm to Wed. (7/12) @ 11:59pm

▪ Will cover topics from Exercise 1, 2, 3, and Homework 1

▪ Should only take about 20 – 45 min.

▪ Make sure to look at the Quizzes page for information about
collaboration.

• Gilligan’s Island Rule

▪ Review lecture slides, section slides and exercise sample solutions

❖ Things are getting hectic these next couple of weeks!

▪ The course staff is here to support you

▪ Please reach out on Ed (or via 1-on-1 request) if you need help!

4

https://courses.cs.washington.edu/courses/cse333/23su/quizzes/

CSE333, Summer 2023L06: File I/O

Lecture Outline

❖ File I/O with the C standard library

❖ C Stream Buffering

❖ POSIX Lower-Level I/O

❖ System Calls (High-Level View)

5

CSE333, Summer 2023L06: File I/O

File I/O

❖ We’ll start by using C’s standard library
▪ These functions are part of glibc on Linux

▪ They are implemented using Linux system calls (POSIX)

❖ C’s stdio defines the notion of a stream

▪ A sequence of characters that flows to and from a device

• Can be either text or binary; Linux does not distinguish

▪ Is buffered by default; libc reads ahead of your program

▪ Three streams provided by default: stdin, stdout, stderr

• You can open additional streams to read and write to files

▪ C streams are manipulated with a FILE* pointer, which is
defined in stdio.h

6

CSE333, Summer 2023L06: File I/O

C Stream Functions (1 of 2)

❖ Some stream functions (complete list in stdio.h):

▪ FILE* fopen(filename, mode);

• Opens a stream to the specified file in specified file access mode

▪ int fclose(stream);

• Closes the specified stream (and file)

▪ int fprintf(stream, format, ...);

• Writes a formatted C string

– printf(...); is equivalent to fprintf(stdout, ...);

▪ int fscanf(stream, format, ...);

• Reads data and stores data matching the format string

7

FILE* fopen(filename, mode);

int fclose(stream);

int fprintf(stream, format, ...);

int fscanf(stream, format, ...);

CSE333, Summer 2023L06: File I/O

C Stream Functions (2 of 2)

❖ Some stream functions (complete list in stdio.h):

▪ FILE* fopen(filename, mode);

• Opens a stream to the specified file in specified file access mode

▪ int fclose(stream);

• Closes the specified stream (and file)

▪ int fprintf(stream, format, ...);

• Writes an array of count elements of size bytes from ptr to stream

▪ int fscanf(stream, format, ...);

• Reads an array of count elements of size bytes from stream to ptr

8

FILE* fopen(filename, mode);

int fclose(stream);

size_t fwrite(ptr, size, count, stream);

size_t fread(ptr, size, count, stream);

CSE333, Summer 2023L06: File I/O

C Stream Error Checking/Handling

❖ Some error functions (complete list in stdio.h):

▪ int ferror(stream);

• Checks if the error indicator associated with the specified stream is
set

▪ void clearerr(stream);

• Resets error and EOF indicators for the specified stream

▪ void perror(message);

• Prints message followed by an error message related to errno to
stderr

9

int ferror(stream);

int clearerr(stream);

void perror(message);

CSE333, Summer 2023L06: File I/O

C Streams Example

10

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#define READBUFSIZE 128

int main(int argc, char** argv) {

 FILE* fin;

 FILE* fout;

 char readbuf[READBUFSIZE];

 size_t readlen;

 if (argc != 3) {

 fprintf(stderr, "usage: ./cp_example infile outfile\n");

 return EXIT_FAILURE; // defined in stdlib.h

 }

 // Open the input file

 fin = fopen(argv[1], "rb"); // "rb" -> read, binary mode

 if (fin == NULL) {

 perror("fopen for read failed");

 return EXIT_FAILURE;

 }

 ... // next slide’s code

cp_example.c

CSE333, Summer 2023L06: File I/O

C Streams Example

11

int main(int argc, char** argv) {

 ... // previous slide’s code

 // Open the output file

 fout = fopen(argv[2], "wb"); // "wb" -> write, binary mode

 if (fout == NULL) {

 perror("fopen for write failed");

 fclose(fin);

 return EXIT_FAILURE;

 }

 // Read from the file, write to fout

 while ((readlen = fread(readbuf, 1, READBUFSIZE, fin)) > 0) {

 // Test to see if we encountered an error while reading

 if (ferror(fin)) {

 perror("fread failed");

 fclose(fin);

 fclose(fout);

 return EXIT_FAILURE;

 }

 ... // next slide’s code

}

cp_example.c

CSE333, Summer 2023L06: File I/O

C Streams Example

12

int main(int argc, char** argv) {

 ... // two slides ago’s code

 ... // previous slide’s code

 if (fwrite(readbuf, 1, readlen, fout) < readlen) {

 perror("fwrite failed");

 fclose(fin);

 fclose(fout);

 return EXIT_FAILURE;

 }

 }

 fclose(fin);

 fclose(fout);

 return EXIT_SUCCESS;

}

cp_example.c

CSE333, Summer 2023L06: File I/O

Lecture Outline

❖ File I/O with the C standard library

❖ C Stream Buffering

❖ POSIX Lower-Level I/O

❖ System Calls (High-Level View)

13

CSE333, Summer 2023L06: File I/O

Buffering

❖ By default, stdio uses buffering for streams:

▪ Data written by fwrite() is copied into a buffer allocated by
stdio inside your process’ address space

▪ As some point, the buffer will be “drained” into the destination:

• When you explicitly call fflush() on the stream

• When the buffer size is exceeded (often 1024 or 4096 bytes)

• For stdout to console, when a newline is written (“line buffered”) or
when some other function tries to read from the console

• When you call fclose() on the stream

• When your process exits gracefully (exit() or return from
main())

14

CSE333, Summer 2023L06: File I/O

Buffering Example

15

int main(int argc, char** argv) {

 FILE* fout = fopen("test.txt", "wb");

 // write "hi" one char at a time

 if (fwrite("h", sizeof(char), 1, fout) < 1) {

 perror("fwrite failed");

 fclose(fout);

 return EXIT_FAILURE;

 }

 if (fwrite("i", sizeof(char), 1, fout) < 1) {

 perror("fwrite failed");

 fclose(fout);

 return EXIT_FAILURE;

 }

 fclose(fout);

 return EXIT_SUCCESS;

}

C stdio buffer

test.txt (disk)

⋯

buffered_hi.c

'h' 'i'

'h' 'i'

CSE333, Summer 2023L06: File I/O

No Buffering Example

16

int main(int argc, char** argv) {

 FILE* fout = fopen("test.txt", "wb");

 setbuf(fout, NULL); // turn off buffering

 // write "hi" one char at a time

 if (fwrite("h", sizeof(char), 1, fout) < 1) {

 perror("fwrite failed");

 fclose(fout);

 return EXIT_FAILURE;

 }

 if (fwrite("i", sizeof(char), 1, fout) < 1) {

 perror("fwrite failed");

 fclose(fout);

 return EXIT_FAILURE;

 }

 fclose(fout);

 return EXIT_SUCCESS;

}

C stdio buffer

test.txt (disk)

unbuffered_hi.c

⋯

'h' 'i'

CSE333, Summer 2023L06: File I/O

Why Buffer?

❖ Performance – avoid disk accesses

▪ Group many small writes
into a single larger write

▪ Disk Latency = 😱😱😱
(Jeff Dean from LADIS ’09)

❖ Convenience – nicer API
▪ We’ll compare C’s fread() with POSIX’s read()

17

CSE333, Summer 2023L06: File I/O

Why NOT Buffer?

❖ Reliability – the buffer needs to be flushed

▪ Loss of computer power = loss of data

▪ “Completion” of a write (i.e., return from fwrite()) does not
mean the data has actually been written

• What if you signal another process to read the file you just wrote to?

❖ Performance – buffering takes time
▪ Copying data into the stdio buffer consumes CPU cycles and

memory bandwidth

▪ Can potentially slow down high-performance applications, like a
web server or database (“zero-copy”)

❖ When is buffering faster? Slower?

18

CSE333, Summer 2023L06: File I/O

Lecture Outline

❖ File I/O with the C standard library

❖ C Stream Buffering

❖ POSIX Lower-Level I/O

❖ System Calls (High-Level View)

19

CSE333, Summer 2023L06: File I/O

From C to POSIX

❖ Most UNIX-en support a common set of lower-level file
access APIs: POSIX – Portable Operating System Interface
▪ open(), read(), write(), close(), lseek()

• Similar in spirit to their f*() counterparts from the C std lib

• Lower-level and unbuffered compared to their counterparts

• Also less convenient

▪ You will have to use these to read file system directories and for
network I/O, so we might as well learn them now

• These are functionalities that C stdio doesn’t provide!

20

CSE333, Summer 2023L06: File I/O

open/close

❖ To open a file:
▪ Pass in the filename and access mode (similar to fopen)

▪ Get back a “file descriptor”

• Similar to FILE* from fopen, but is just an int

• -1 indicates an error

❖ Open descriptors: 0 (stdin), 1 (stdout), 2 (stderr)
21

#include <fcntl.h> // for open()

#include <unistd.h> // for close()

 ...

 int fd = open("foo.txt", O_RDONLY);

 if (fd == -1) {

 perror("open failed");

 exit(EXIT_FAILURE);

 }

 ...

 close(fd);

CSE333, Summer 2023L06: File I/O

Reading from a File

❖ ssize_t read(int fd, void* buf, size_t count);

▪ Advances forward in the file by number
of bytes read

▪ Returns the number of bytes read

• Might be fewer bytes than you requested (!!!)

• Returns 0 if you’re already at the end-of-file

• Returns -1 on error (and sets errno)

▪ There are some surprising error modes (check errno)

• EBADF: bad file descriptor

• EFAULT: output buffer is not a valid address

• EINTR: read was interrupted, please try again (ARGH!!!! 😤😠)

• And many others…

22

ssize_t read(int fd, void* buf, size_t count);

CSE333, Summer 2023L06: File I/O

23

pollev.com/cse333

We want to read ‘n’ bytes. Which is the correct
completion of the blank below?

A. buf

B. buf + bytes_left

C. buf + bytes_left - n

D. buf + n - bytes_left

E. We’re lost…

char* buf = ...; // buffer of size n

int bytes_left = n;

int result; // result of read()

while (bytes_left > 0) {

 result = read(fd, ______, bytes_left);

 if (result == -1) {

 if (errno != EINTR) {

 // a real error happened,

 // so return an error result

 }

 // EINTR happened,

 // so do nothing and try again

 continue;

 }

 bytes_left -= result;

}

CSE333, Summer 2023L06: File I/O

One method to read() 𝑛 bytes

24

int fd = open(filename, O_RDONLY);

char* buf = ...; // buffer of appropriate size

int bytes_left = n;

int result;

while (bytes_left > 0) {

 result = read(fd, buf + (n - bytes_left), bytes_left);

 if (result == -1) {

 if (errno != EINTR) {

 // a real error happened, so return an error result

 }

 // EINTR happened, so do nothing and try again

 continue;

 } else if (result == 0) {

 // EOF reached, so stop reading

 break;

 }

 bytes_left -= result;

}

close(fd);

readN.c

CSE333, Summer 2023L06: File I/O

Other Low-Level Functions

❖ Read man pages to learn about:
▪ write() – write data

• #include <unistd.h>

▪ fsync() – flush data to the underlying device

• #include <unistd.h>

▪ opendir(), readdir(), closedir() – deal with directory
listings

• Make sure you read the section 3 version (e.g., man 3 opendir)

• #include <dirent.h>

❖ A useful shortcut sheet (from CMU):
http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

25

http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

CSE333, Summer 2023L06: File I/O

C Standard Library vs. POSIX

❖ C standard library implements a subset of POSIX

▪ e.g., POSIX provides directory manipulation that C std lib doesn’t

❖ C standard library implements automatic buffering

❖ C standard library has a nicer API and provides
conveniences that POSIX does not.

▪ e.g., printf formatting…

❖ The two are similar but C standard library builds on top of
POSIX

▪ Choice between high-level and low-level

▪ Will depend on the requirements of your application

▪ You will explore this relationship in Exercise 4!

26

CSE333, Summer 2023L06: File I/O

Lecture Outline

❖ File I/O with the C standard library

❖ C Stream Buffering

❖ POSIX Lower-Level I/O

❖ System Calls (High-Level View)

27

CSE333, Summer 2023L06: File I/O

Remember This Picture?

28

C application

C standard
library (glibc)

C++ STL/boost/
standard library

C++ application Java application

JRE

CPU memory storage network
GPU clock audio radio peripherals

HW/SW interface
(x86 + devices)

OS / app interface
(system calls)

operating system

hardware

A brief
diversion...

CSE333, Summer 2023L06: File I/O

What’s an OS?

❖ Software that:

▪ Directly interacts with the hardware

• OS is trusted to do so; user-level programs are not

• OS must be ported to new hardware; user-level programs are
portable

▪ Manages (allocates, schedules, protects) hardware resources

• Decides which programs can access which files, memory locations,
pixels on the screen, etc. and when

▪ Abstracts away messy hardware devices

• Provides high-level, convenient, portable abstractions
(e.g., files, disk blocks)

29

CSE333, Summer 2023L06: File I/O

OS: Abstraction Provider

❖ The OS is the “layer below”

▪ A module that your program can call (with system calls)

▪ Provides a powerful OS API – POSIX, Windows, etc.

30

a process running
your program

OS

OS
API

fi
le

 s
ys

te
m

n
et

w
o

rk
 s

ta
ck

vi
rt

u
al

 m
em

o
ry

p
ro

ce
ss

 m
gm

t.

…
 e

tc
 …

File System
• open(), read(), write(), close(), …

Network Stack
• connect(), listen(), read(), write(), ...

Virtual Memory
• brk(), shm_open(), …

Process Management
• fork(), wait(), nice(), …

CSE333, Summer 2023L06: File I/O

OS: Protection System

❖ OS isolates process from each other
▪ But permits controlled sharing between them

• Through shared name spaces (e.g., file names)

❖ OS isolates itself from processes
▪ Must prevent processes from accessing the

hardware directly

❖ OS is allowed to access the hardware
▪ User-level processes run with the CPU

(processor) in unprivileged mode

▪ The OS runs with the CPU in privileged mode

▪ User-level processes invoke system calls to
safely enter the OS

31

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(t

ru
st

ed
)

There are special cases

where “super-user”

permissions granted

CSE333, Summer 2023L06: File I/O

Extra Exercise #1

❖ Write a program that:
▪ Uses argc/argv to receive the name of a text file

▪ Reads the contents of the file a line at a time

▪ Parses each line, converting text into a uint32_t

▪ Builds an array of the parsed uint32_t’s

▪ Sorts the array

▪ Prints the sorted array to stdout

❖ Hint: use man to read about
getline, sscanf, realloc,
and qsort

32

bash$ cat in.txt

1213

3231

000005

52

bash$./extra1 in.txt

5

52

1213

3231

bash$

CSE333, Summer 2023L06: File I/O

Extra Exercise #2

❖ Write a program that:

▪ Loops forever; in each loop:

• Prompt the user to
input a filename

• Reads a filename
from stdin

• Opens and reads
the file

• Prints its contents
to stdout in the format shown:

❖ Hints:

▪ Use man to read about fgets

▪ Or, if you’re more courageous, try man 3 readline to learn about
libreadline.a and Google to learn how to link to it

33

00000000 50 4b 03 04 14 00 00 00 00 00 9c 45 26 3c f1 d5

00000010 68 95 25 1b 00 00 25 1b 00 00 0d 00 00 00 43 53

00000020 45 6c 6f 67 6f 2d 31 2e 70 6e 67 89 50 4e 47 0d

00000030 0a 1a 0a 00 00 00 0d 49 48 44 52 00 00 00 91 00

00000040 00 00 91 08 06 00 00 00 c3 d8 5a 23 00 00 00 09

00000050 70 48 59 73 00 00 0b 13 00 00 0b 13 01 00 9a 9c

00000060 18 00 00 0a 4f 69 43 43 50 50 68 6f 74 6f 73 68

00000070 6f 70 20 49 43 43 20 70 72 6f 66 69 6c 65 00 00

00000080 78 da 9d 53 67 54 53 e9 16 3d f7 de f4 42 4b 88

00000090 80 94 4b 6f 52 15 08 20 52 42 8b 80 14 91 26 2a

000000a0 21 09 10 4a 88 21 a1 d9 15 51 c1 11 45 45 04 1b

... etc ...

	Slide 1: About how long did Exercise 3 take you?
	Slide 2: File I/O: Cstdio, Buffering, POSIX CSE 333 Summer 2023
	Slide 3: Relevant Course Information (1/2)
	Slide 4: Relevant Course Information (2/2)
	Slide 5: Lecture Outline
	Slide 6: File I/O
	Slide 7: C Stream Functions (1 of 2)
	Slide 8: C Stream Functions (2 of 2)
	Slide 9: C Stream Error Checking/Handling
	Slide 10: C Streams Example
	Slide 11: C Streams Example
	Slide 12: C Streams Example
	Slide 13: Lecture Outline
	Slide 14: Buffering
	Slide 15: Buffering Example
	Slide 16: No Buffering Example
	Slide 17: Why Buffer?
	Slide 18: Why NOT Buffer?
	Slide 19: Lecture Outline
	Slide 20: From C to POSIX
	Slide 21: open/close
	Slide 22: Reading from a File
	Slide 23: We want to read ‘n’ bytes. Which is the correct completion of the blank below?
	Slide 24: One method to read() n bytes
	Slide 25: Other Low-Level Functions
	Slide 26: C Standard Library vs. POSIX
	Slide 27: Lecture Outline
	Slide 28: Remember This Picture?
	Slide 29: What’s an OS?
	Slide 30: OS: Abstraction Provider
	Slide 31: OS: Protection System
	Slide 32: Extra Exercise #1
	Slide 33: Extra Exercise #2

