W UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Summer 2023

@ PO" Evel‘yWhel‘e pollev.com/cse333

About how long did Exercise 3 take you?

"moowR

[2, 4) hours

[4, 6) hours

[6, 8) hours

8+ Hours

| didn’t submit / | prefer not to say

CSE333, Summer 2023

YW UNIVERSITY of WASHINGTON LO6: File I/O

File 1/0: Cstdio, Buffering, POSIX
CSE 333 Summer 2023

Instructor: Timmy Yang

Teaching Assistants:
Jennifer Xu Leanna Nguyen Pedro Amarante

Sara Deutscher Tanmay Shah

W UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Summer 2023

Relevant Course Information (1/2)

» Exercise 4 posted today, due next Monday (7/10)

= Longest exercise and HW1 is due; Exercise 5 will be released on
Friday, due next Wednesday (7/12)

» Homework 1 due Thursday night (7/6)
" Clean up “to do” comments, but leave “STEP #” markers
" Graded not just on correctness, also code quality

" OH get crowded — come prepared to describe your incorrect
behavior and what you think the issue is and what you’ve tried

= late days: don’ttag hwl-final until you are really ready
- Please use them if you need to!

» Homework 2 to be released on Friday (7/7)

= Partner declaration form and matching form will be released later
this week

W UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Summer 2023

Relevant Course Information (2/2)

% Quiz 1 open next Monday (7/10)

= Will be open from Mon. (7/10) @ 2pm to Wed. (7/12) @ 11:59pm
= Will cover topics from Exercise 1, 2, 3, and Homework 1
= Should only take about 20 — 45 min.

= Make sure to look at the Quizzes page for information about
collaboration.

- Gilligan’s Island Rule

= Review lecture slides, section slides and exercise sample solutions

+ Things are getting hectic these next couple of weeks!
" The course staff is here to support you
" Please reach out on Ed (or via 1-on-1 request) if you need help!

https://courses.cs.washington.edu/courses/cse333/23su/quizzes/

w UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Summer 2023

Lecture Outline

+ File 1/O with the C standard library
+ C Stream Buffering

+» POSIX Lower-Level 1/0

+ System Calls (High-Level View)

w UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Summer 2023

File 1/O

+» We'll start by using C’s standard library
" These functions are part of glibc on Linux

" They are implemented using Linux system calls (POSIX)

» C's stdio defines the notion of a stream

= A sequence of characters that flows to and from a device
- Can be either text or binary; Linux does not distinguish

" |s buffered by default; 1 ibc reads ahead of your program

= Three streams provided by default: stdin, stdout, stderxr
« You can open additional streams to read and write to files

= Cstreams are manipulated with a FILE* pointer, which is
defined in stdio.h

w UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Summer 2023

C Stream Functions (1 of 2)

+» Some stream functions (complete list in stdio.h):

-[FILE* fopen (filename, mode);]

- Opens a stream to the specified file in specified file access mode

-[int fclose(stream);]

« Closes the specified stream (and file)

-[int fprintf (stream, format, ...);]

- Writes a formatted C string
— printf (...); isequivalentto fprintf (stdout, ...);

-[int fscanf (stream, format, ...);]

- Reads data and stores data matching the format string

w UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Summer 2023

C Stream Functions (2 of 2)

+» Some stream functions (complete list in stdio.h):

-[FILE* fopen (filename, mode);]

- Opens a stream to the specified file in specified file access mode

-[int fclose(stream);]

« Closes the specified stream (and file)

-[Size_t fwrite (ptr, size, count, stream);]

- Writes an array of count elements of size bytes from ptr to stream

-[size_t fread (ptr, size, count, stream);]

- Reads an array of count elements of size bytes from stream to ptr

w UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Summer 2023

C Stream Error Checking/Handling

+» Some error functions (complete list in stdio.h):

-[int ferror(stream);]

- Checks if the error indicator associated with the specified stream is
set

L [int clearerr (stream) ;]

- Resets error and EOF indicators for the specified stream

m [void perror (message) ;]

- Prints message followed by an error message related to errno to
stderr

YW UNIVERSITY of WASHINGTON

LO6: File I/O

C Streams Example

cp_example.c

r#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#define READBUFSIZE 128

int main(int argc,
FILE* fin;
FILE* fout;
char readbuf [READBUFSIZE];
size t readlen;
1f (argc !'= 3) {
fprintf (stderr, "usage:
return EXIT FAILURE;

}

// Open the input file
fin fopen (argv[l],
if (fin NULL) {

return EXIT FAILURE;

// next slide’s code

"rb") .
’

char** argv) {

./cp_example infile outfile\n");
// defined in stdlib.h

// "rb" -> read, binary mode

perror ("fopen for read failed");

~

CSE333, Summer 2023

10

w UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Summer 2023

C Streams Example

r

cp_example.c

int main(int argc, char** argv) {)

// previous slide’s code

// Open the output file
fout = fopen(argv[2], "wb"); // "wb" -> write, binary mode
if (fout == NULL) {

perror ("fopen for write failed");

fclose (fin);

return EXIT FAILURE;

}

// Read from the file, write to fout
while ((readlen = fread(readbuf, 1, READBUFSIZE, fin)) > 0) {
// Test to see 1f we encountered an error while reading
1f (ferror (fin)) {
perror ("fread failed");
fclose (fin) ;
fclose (fout) ;
return EXIT FAILURE;
}

// next slide’s code

LO6: File I/O

YW UNIVERSITY of WASHINGTON

C Streams Example

CSE333, Summer 2023

cp_example.c

D

rint main (int argc, char** argv) {
// two slides ago’s code
// previous slide’s code

1f (fwrite (readbuf, 1, readlen,
perror ("fwrite failed");
fclose (fin);
fclose (fout) ;
return EXIT FAILURE;
}
}

fclose (fin) ;
fclose (fout) ;

return EXIT SUCCESS;

fout)

< readlen)

{

12

CSE333, Summer 2023

YW UNIVERSITY of WASHINGTON LO6: File I/O

Lecture Outline

+ File I/O with the C standard library
+ C Stream Buffering

+» POSIX Lower-Level 1/0

+ System Calls (High-Level View)

13

w UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Summer 2023

Buffering

+» By default, stdio uses buffering for streams:

= Data written by £fwrite () is copied into a buffer allocated by
stdio inside your process’ address space

= As some point, the buffer will be “drained” into the destination:
- When you explicitly call ££1ush () on the stream

- When the buffer size is exceeded (often 1024 or 4096 bytes)

- For stdout to console, when a newline is written (“line buffered”) or
when some other function tries to read from the console

-« Whenyou call £fclose () on the stream

- When your process exits gracefully (exit () or return from
main())

14

w UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Summer 2023

Buffering Example

[int main (int argc, char** argv) {
== FILE* fout = fopen ("test.txt", "wb");

// write "hi" one char at a time C stdio buffer
==l if (fwrite("h", sizeof (char), 1, fout) < 1) { SR
perror ("fwrite failed");
fclose (fout) ;
return EXIT FAILURE;
}
=y i (fwrite("i", sizeof (char), 1, fout) < 1) { test.txt (disk)
perror ("fwrite failed"); IR
fclose (fout) ;

return EXIT FAILURE;
}

=P fclose (fout):;
return EXIT SUCCESS;

}

\ J

buffered_hi.c

15

YW UNIVERSITY of WASHINGTON LO6: File I/O

No Buffering Example

[int main (int argc, char** argv) {

:‘ FILE* fout = fopen("test.txt", "wb");
setbuf (fout, NULL); // turn off buffering

// write "hi" one char at a time

m—pp if (fwrite ("h", sizeof (char), 1, fout) <
perror ("fwrite failed");

fclose (fout) ;

return EXIT FAILURE;

}

ey if (fwrite("i", sizeof (char), 1, fout) <
perror ("fwrite failed");

fclose (fout) ;

return EXIT FAILURE;

}

=P fclose (fout):;
return EXIT SUCCESS;

}

\

unbuffered_hi.c

CSE333, Summer 2023

C stdio buffer

’/

/

test.txt (disk)

lhl

l'

16

YW UNIVERSITY of WASHINGTON LO6: File I/O

CSE333, Summer 2023

Why Buffer?

« Performance — avoid disk accesses

" Group many small writes

|
into a single larger write

s

aon Dm0 \
input EER 1] ———=> ovhvt |, XKeach
E (§) bukler , Siream
ndividval J R—-_-/
writgs P

N\

= Disk Latency = & &3 &

(Jeff Dean from LADIS '09)

Numbers Everyone Should Know

L1l cache reference
Branch mispredict
L2 cache reference
Mutex lock/unlock

Main memory reference

Compress 1K bytes with Zippy 3
Send 2K bytes over 1 Gbps network 2105
Read 1 MB sequentially from memory 250,
Round trip within same datacenter 500,
Disk seek 10,000,
Read 1 MB sequentially from disk 20,000,
Send packet CA->Netherlands->CA 150,000,

0.5 ns

5 ns

25 ns
100 ns
000 ns
000 ns
000 ns
000 ns
000 ns
000 ns
000 ns

Convenience — nicer API
= We'll compare C's £read ()

with POSIX’s read ()

17

W UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Summer 2023

Why NOT Buffer?

+ Reliability — the buffer needs to be flushed

" |oss of computer power = loss of data

= “Completion” of a write (i.e., return from £fwrite ()) does not
mean the data has actually been written

- What if you signal another process to read the file you just wrote to?

>

+» Performance — buffering takes time

= Copying data into the stdio buffer consumes CPU cycles and
memory bandwidth

L)

= Can potentially slow down high-performance applications, like a
web server or database (“zero-copy”)

+» When is buffering faster? Slower?

18

CSE333, Summer 2023

YW UNIVERSITY of WASHINGTON LO6: File I/O

Lecture Outline

+ File I/O with the C standard library
+ C Stream Buffering

+» POSIX Lower-Level I/O

+ System Calls (High-Level View)

19

w UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Summer 2023

From C to POSIX

+» Most UNIX-en support a common set of lower-level file
access APIs: POSIX — Portable Operating System Interface
" open(), read(),write(),close (), 1seek ()
- Similar in spirit to their £* () counterparts from the C std lib
- Lower-level and unbuffered compared to their counterparts
- Also less convenient

"= You will have to use these to read file system directories and for
network 1/0O, so we might as well learn them now

- These are functionalities that C stdio doesn’t provide!

20

W UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Summer 2023

open/close

+~ To open a file:
= Pass in the filename and access mode (similar to fopen)

" Get back a “file descriptor”
- Similar to FILE* from fopen, butis justan int
- -1 indicates an error

(#include <fcntl.h> // for open()
#include <unistd.h> // for close ()

int fd = open("foo.txt", O RDONLY) ;
it (£fd == -1) {

perror ("open failed");

exit (EXIT FAILURE) ;
}

close (fd) ;
_ J

+» Open descriptors: 0 (stdin), 1 (stdout), 2 (stderr)

21

YW UNIVERSITY of WASHINGTON LO6: File I/O

CSE333, Summer 2023

Reading from a File

%[SSize_t read (int fd, void* buf, size t count);

= Advances forward in the file by number
of bytes read

= Returns the number of bytes read

- Might be fewer bytes than you requested (!!! E@

)
- Returns O if you're already at the end-of-flle\EwT,_ [ﬁ’ WJ ~ /
- Returns -1 on error (and sets errno) & & lW‘J

ATqagein LN 4
J4) “Mj-‘*“‘ ;tz—f’
" There are some surprising error modes (check errno)

- ERADF: bad file descriptor

- EFAULT: output bufferis not a valid address

- EINTR: read was interrupted, please try again (ARGH!!!! G2 &)
- And many others...

22

W UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Summer 2023

@ PO" Evel‘yWhel‘e pollev.com/cse333

We want to read ‘n’ bytes. Which is the correct
completion of the blank below?

(char* buf = ...; // buffer of size n
int bytes left = n;
int result; // result of read()
| A.
while (bytes left > 0) {
result = read(fd, , bytes left);
if (result == -1) { - B. buf + bytes_left
1f (errno != EINTR) {
// a real error happened, C. buf+ bytes left - n
// so return an error result -
}
// EINTR happened, D. buf + n - bytes_left
// so do nothing and try again
SORIELILES E. We’re lost...
}
bytes left -= result;
}

LO6: File I/O CSE333, Summer 2023

YW UNIVERSITY of WASHINGTON

One method to read () n bytes

(int fd = open(filename, O RDONLY) ; R
char* buf = ...; // buffer of appropriate size
int bytes left = n;
int result;
while (bytes left > 0) {
result = read(fd, buf + (n - bytes left), bytes left);
1f (result == -1) {
1f (errno != EINTR) {
// a real error happened, so return an error result
}
// EINTR happened, so do nothing and try again
continue;
} else 1f (result == 0) {
// EOF reached, so stop reading
break;
}
bytes left -= result;
}
\ Close (fd) ; y

readN.c ,,

w UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Summer 2023

Other Low-Level Functions

+» Read man pages to learn about:

" write () —write data
« #include <unistd.h>
= fsync () —flush data to the underlying device
« #include <unistd.h>
" opendir (), readdir (), closedir () —deal with directory
listings
- Make sure you read the section 3 version (e.g., man 3 opendir)
« #include <dirent.h>

+ A useful shortcut sheet (from CMU):
http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

25

http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

W UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Summer 2023

C Standard Library vs. POSIX

» Cstandard library implements a subset of POSIX
= e.g., POSIX provides directory manipulation that C std lib doesn’t

» Cstandard library implements automatic buffering

» Cstandard library has a nicer APl and provides
conveniences that POSIX does not.

= e.g., printf formatting...

« The two are similar but C standard library builds on top of
POSIX

" Choice between high-level and low-level

= Will depend on the requirements of your application
" You will explore this relationship in Exercise 4!

26

CSE333, Summer 2023

YW UNIVERSITY of WASHINGTON LO6: File I/O

Lecture Outline

+ File I/O with the C standard library
+ C Stream Buffering

+» POSIX Lower-Level 1/0

+ System Calls (High-Level View)

27

W UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Summer 2023

Remember This Picture?

A brief
diversion...

C application C++ application Java application

C standard C++ STL/boost/
library (glibc) standard library

OS / app interface
(system calls)

HW/SW interface
(x86 + devices)

hardware

CPU memory storage network
GPU clock audio radio peripherals

28

YW UNIVERSITY of WASHINGTON LO6: File I/O

CSE333, Summer 2023

What’s an OS?

« Software that:

= Directly interacts with the hardware
« OS is trusted to do so; user-level programs are not

« OS must be ported to new hardware; user-level programs are
portable

" Manages (allocates, schedules, protects) hardware resources

- Decides which programs can access which files, memory locations,
pixels on the screen, etc. and when

= Abstracts away messy hardware devices

- Provides high-level, convenient, portable abstractions
(e.g., files, disk blocks)

29

W UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Summer 2023

OS: Abstraction Provider

+» The OS is the “layer below”
= A module that your program can call (with system calls)
" Provides a powerful OS APl — POSIX, Windows, etc.

File System
* open(), read(), write(), close(), ...

Network Stack
* connect(), listen(), read(), write(), ...

Virtual Memory
* brk(), shm_open(), ...

Process Management
« fork(), wait(), nice(), ...

|
|
£ |
(]
|
(Vp)]
> |
9
D
G |
|
|

virtual memory
process mgmt.

4
(@)
1°)
)
(s}
4
| -
S
)
Q
C

... etc ...

30

W UNIVERSITY of WASHINGTON LO6: File I/O CSE333, Summer 2023

OS:

Protection System

+ OS isolates process from each other There are special cases

+» OS isolates itself from processes

‘0

+ OSis allowed to access the hardware

where “super-user”

But permits controlled sharing between them o
permissions gravted

« Through shared name spaces (e.g., file names)

Must prevent processes from accessing the
hardware directly

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

User-level processes run with the CPU ON
(processor) in unprivileged mode (trusted)
The OS runs with the CPU in privileged mode

User-level processes invoke system calls to
safely enter the OS HW (tFUStEd)

31

YW UNIVERSITY of WASHINGTON LO6: File I/O

Extra Exercise #1

+» Write a program that:

CSE333, Summer 2023

= Uses argc/argv to receive the name of a text file

= Reads the contents of the file a line at a time

" Parses each line, converting text intoa uint32 t

" Builds an array of the parsed uint32 t’s

= Sorts the array
" Prints the sorted array to stdout

« Hint: use man to read about
getline, sscanf, reallogc,
and gsort

bash$ cat in.txt

1213

3231

000005

52

bash$./extral in.txt

o)

52
1213
3231
bash$

32

YW UNIVERSITY of WASHINGTON

Extra Exercise #2

+» Write a program that:

LO6: File 1/O

" |Loops forever; in each loop:

Prompt the user to
input a filename

Reads a filename
from stdin

Opens and reads
the file

Prints its contents
to stdout in the format shown:

00000000
00000010
00000020
00000030
00000040
00000050

00000060
00000070
00000080
00000090
000000a0

. etc ...

Use man to read about fgets

Or, if you’re more courageous, try man
libreadline.a and Google to learn how to link to it

CSE333, Summer 2023

3 readline tolearn about

	Slide 1: About how long did Exercise 3 take you?
	Slide 2: File I/O: Cstdio, Buffering, POSIX CSE 333 Summer 2023
	Slide 3: Relevant Course Information (1/2)
	Slide 4: Relevant Course Information (2/2)
	Slide 5: Lecture Outline
	Slide 6: File I/O
	Slide 7: C Stream Functions (1 of 2)
	Slide 8: C Stream Functions (2 of 2)
	Slide 9: C Stream Error Checking/Handling
	Slide 10: C Streams Example
	Slide 11: C Streams Example
	Slide 12: C Streams Example
	Slide 13: Lecture Outline
	Slide 14: Buffering
	Slide 15: Buffering Example
	Slide 16: No Buffering Example
	Slide 17: Why Buffer?
	Slide 18: Why NOT Buffer?
	Slide 19: Lecture Outline
	Slide 20: From C to POSIX
	Slide 21: open/close
	Slide 22: Reading from a File
	Slide 23: We want to read ‘n’ bytes. Which is the correct completion of the blank below?
	Slide 24: One method to read() n bytes
	Slide 25: Other Low-Level Functions
	Slide 26: C Standard Library vs. POSIX
	Slide 27: Lecture Outline
	Slide 28: Remember This Picture?
	Slide 29: What’s an OS?
	Slide 30: OS: Abstraction Provider
	Slide 31: OS: Protection System
	Slide 32: Extra Exercise #1
	Slide 33: Extra Exercise #2

