
CSE333, Summer 2023L01: Intro, Getting Started in C

Intro, Getting Started in C
CSE 333 Summer 2023

Instructor: Timmy Yang

Teaching Assistants:

Jennifer Xu Leanna Nguyen Pedro Amarante

Sara Deutscher Tanmay Shah

CSE333, Summer 2023L01: Intro, Getting Started in C

❖ Your Instructor: just call me Timmy

▪ Part-Time Lecturer

▪ First-time lecturing! Learning along with you ☺

❖ TAs:

▪ Available in section, office hours, and discussion board

❖ More than anything, we want you to feel…

✓Comfortable and welcome in this space

✓Able to learn and succeed in this course

✓Comfortable reaching out if you need help or want change

Introductions: Course Staff

2

Jennifer Leanna Pedro Sara Tanmay

CSE333, Summer 2023L01: Intro, Getting Started in C

Introductions: Students

❖ ~60 students registered

❖ Expected background

▪ Prereq: CSE 351 – C, pointers, memory model, linker, system calls

▪ Indirect Prereq: CSE 143 – Classes, Inheritance, Basic Data
structures, and general good style practices

▪ CSE 391 or Linux skills needed for CSE 351 assumed

❖ Get to know each other! Help each other out!

▪ Working well with others is a valuable life skill

▪ Take advantage of partner work, where permissible, to learn, not
just get a grade

• Good chance to learn collaboration tools and tricks

3

CSE333, Summer 2023L01: Intro, Getting Started in C

Lecture Outline

❖ Course Policies
▪ https://courses.cs.washington.edu/courses/cse333/23su/syllabus.html

▪ Digest here, but you must read the full details online

❖ Course Introduction

❖ Getting Started in C

▪ What do you need to write a C program from scratch?

4

https://courses.cs.washington.edu/courses/cse333/23su/syllabus.html

CSE333, Summer 2023L01: Intro, Getting Started in C

Communication

❖ Website: http://cs.uw.edu/333

▪ Schedule, policies, materials, assignments, etc.

❖ Discussion: https://edstem.org/us/courses/40647

▪ Announcements made here

▪ Ask and answer questions – staff will monitor and contribute

❖ Office Hours: Google Sheet queue for both in-person and
virtual OHs, which are spread throughout the week

❖ 1-on-1 Meetings: can request a limited number of
appointments via Google Form

❖ Anonymous feedback

5

http://cs.uw.edu/333
https://edstem.org/us/courses/40647

CSE333, Summer 2023L01: Intro, Getting Started in C

In-Person Office Hours

❖ Ex: Allen 3rd floor breakout

▪ Up the stairs in the CSE
Atrium (Allen Center,
not Gates)

▪ At the top of two flights,
the open area with the
whiteboard wall is the
3rd floor breakout!

6

CSE333, Summer 2023L01: Intro, Getting Started in C

Course Components

❖ Lectures (26)
▪ Introduce the concepts; take notes

❖ Sections (9)
▪ Applied concepts, important tools and skills for assignments,

clarification of lectures, quiz review and preparation

❖ Programming Exercises (12)
▪ One due roughly every 4-5 days

▪ We are checking for: correctness, memory issues, code style/quality

❖ Programming Project (0+4)
▪ Warm-up, then 4 “homework” that build on each other

❖ Take-home Quizzes (4)
▪ Initial dates on website under Quizzes, encourage review of course

content
7

CSE333, Summer 2023L01: Intro, Getting Started in C

Grading

❖ Exercises: 30% total

▪ Submitted via Gradescope (under your UW email)

▪ Graded on correctness and style by autograders and TAs

❖ Projects: 43% total

▪ Submitted via GitLab; must tag commit that you want graded

▪ Binaries provided if you didn’t get previous part working

▪ Graded on test suite, manual tests, and style

❖ Quizzes: 24% total (~8% each)

▪ Take-home; short answer questions based on assignments

❖ Effort, Participation, and Altruism: 3%

▪ Many ways to earn credit here, relatively lenient on this
8

CSE333, Summer 2023L01: Intro, Getting Started in C

Academic Integrity and Student Conduct

❖ I trust you implicitly and will follow up if that trust is
violated

▪ In short: don’t attempt to gain credit for something you didn’t do
and don’t help others do so, either

❖ This does not mean suffer in silence – learn from the
course staff and peers, talk, share ideas; but don’t share
or copy work that is supposed to be yours

▪ Partners allowed this quarter on programming assignments!

❖ If you find yourself in a situation where you are tempted
to perform academic misconduct, please reach out to
Timmy to explain your situation instead

▪ See the Extenuating Circumstances section of the syllabus

9

CSE333, Summer 2023L01: Intro, Getting Started in C

Lecture Outline

❖ Course Policies
▪ https://courses.cs.washington.edu/courses/cse333/23su/syllabus/

▪ Summary here, but you must read the full details online

❖ Course Introduction

❖ Getting Started in C

▪ What do you need to write a C program from scratch?

10

https://courses.cs.washington.edu/courses/cse333/23su/syllabus/

CSE333, Summer 2023L01: Intro, Getting Started in C

Layers of Computing Below Programming

Software Applications
(written in Java, Python, C, etc.)

Programming Languages & Libraries
(e.g., Java Runtime Env, C Standard Lib)

HW/SW interface

OS/App interface

Operating System
(e.g., Linux, MacOS, Windows)

Hardware
(e.g., CPU, memory, disk, network, peripherals)

11

CSE333, Summer 2023L01: Intro, Getting Started in C

Layers of Computing Below Programming

Software Applications

HW/SW interface

OS/App interface

Operating System
(e.g., Linux, MacOS, Windows)

Hardware
(e.g., CPU, memory, disk, network, peripherals)

12

C application

C standard
library (glibc)

C++ STL/boost/
standard library

C++ application Java application

JRE

CSE333, Summer 2023L01: Intro, Getting Started in C

Systems Programming

❖ The programming skills, engineering discipline, and
knowledge you need to build a system

▪ Programming: C / C++

▪ Discipline: testing, debugging, performance analysis

▪ Knowledge: long list of interesting topics

• Concurrency, OS interfaces and semantics, techniques for consistent
data management, distributed systems algorithms, …

• Most important: a deep(er) understanding of the “layer below”

13

CSE333, Summer 2023L01: Intro, Getting Started in C

Discipline?!?

❖ Cultivate good habits, encourage clean code

▪ Coding style conventions

▪ Unit testing, code coverage testing, regression testing

▪ Reading/writing documentation (code comments, design docs)

▪ Code reviews

❖ Will take you a lifetime to learn, but oh-so-important,
especially for systems code

▪ Avoid write-once, read-never code

▪ Treat assignment submissions in this class as production code

• Comments must be updated, no commented-out code, no extra
(debugging) output

14

STYLE
TIP

CSE333, Summer 2023L01: Intro, Getting Started in C

Style Grading in 333

❖ A style guide is a “set of standards for the writing,
formatting, and design of documents” – in this case, code

❖ No style guide is perfect

▪ Inherently limiting to coding as a form of expression/art

▪ Rules should be motivated (e.g., consistency, performance, safety,
readability), even if not everyone agrees

❖ In 333, we will use a subset of the Google C++ Style Guide

▪ Want you to experience adhering to a style guide

▪ Hope you view these more as design decisions to be considered
rather than rules to follow to get a grade

▪ We acknowledge that judgments of language implicitly encode
certain values and not others

15

CSE333, Summer 2023L01: Intro, Getting Started in C

Lecture Outline

❖ Course Policies
▪ https://courses.cs.washington.edu/courses/cse333/23su/syllabus/

▪ Summary here, but you must read the full details online

❖ Course Introduction

❖ Getting Started in C

▪ What do you need to write a C program from scratch?

16

https://courses.cs.washington.edu/courses/cse333/23su/syllabus/

CSE333, Summer 2023L01: Intro, Getting Started in C

C Data Structures Review

❖ C does not support objects!

❖ Arrays are contiguous chunks of memory

▪ No implicit initialization; declaration just gives you “mystery data”

▪ Don’t know their own length, so no bounds checking

❖ C-strings are null-terminated arrays of characters

▪ Example:

▪ string.h has helpful library/utility functions

• Documentation: http://www.cplusplus.com/reference/cstring/

❖ Structs are collections of fields (variables)

▪ The most object-like, but no methods

17

char x[] = "hi\n";

http://www.cplusplus.com/reference/cstring/

CSE333, Summer 2023L01: Intro, Getting Started in C

Generic C Program Layout

#include <system_files>

#include "local_files"

#define macro_name macro_expr

/* declare functions */

/* declare external variables & structs */

int main(int argc, char* argv[]) {

 /* the innards */

}

/* define other functions */

STYLE
TIP

18

CSE333, Summer 2023L01: Intro, Getting Started in C

C Syntax: main

❖ To get command-line arguments in main, use:

▪ int main(int argc, char* argv[])

❖ What does this mean?

▪ argc contains the number of strings on the command line (the

executable name counts as one, plus one for each argument)

▪ argv is an array containing pointers to the arguments as strings

(more on pointers later)

❖ Example: $./foo hello 87

▪ argc = 3

▪ argv[0]="./foo", argv[1]="hello", argv[2]="87"

int main(int argc, char* argv[])

19

CSE333, Summer 2023L01: Intro, Getting Started in C

C Syntax: main

❖ To get command-line arguments in main, use:

▪ int main(int argc, char* argv[])

❖ Advantages:

▪ Easy to implement – keyboard presses are passed as characters

▪ Flexible – can handle any number of arguments

❖ Disadvantages:

▪ Input checking needed by programmer – prevent user misuse

• Common C idiom is to print back usage messages

▪ Data conversion might be needed – if argument is not intended to
be used as characters

• See Exercise 1!

int main(int argc, char* argv[])

20

CSE333, Summer 2023L01: Intro, Getting Started in C

 A. 44 bytes

 B. 48 bytes

 C. 52 bytes

 D. 56 bytes

 E. We’re lost…

21

pollev.com/cse333

How much memory would you expect to be
allocated for argv & all of its pointed-to arrays?

$ cp –r dir1 dir2

CSE333, Summer 2023L01: Intro, Getting Started in C

Printing in C

❖ int printf(const char* format, ...);

▪ Can check documentation to learn about (1) parameters,
(2) the return value, and (3) error handling

• https://www.cplusplus.com/reference/cstdio/printf/

▪ Very important to use correct format specifier for the value you
want to print, otherwise implicit casting will occur

•

22

int printf(const char* format, ...);

https://www.cplusplus.com/reference/cstdio/printf/

CSE333, Summer 2023L01: Intro, Getting Started in C

Error Handling

❖ Errors and Exceptions
▪ C does not have exception handling (no try/catch)

▪ Errors are returned as integer error codes from functions

• Because of this, error handling is ugly and inelegant

• For readability, CONSTANT_NAMES are defined to abstract away the
actual integer values – need to look up in documentation

▪ Global variable errno holds value of last system error

❖ Status codes and signals
▪ Processes exit (e.g., return from main) with status code

• Standard codes found in stdlib.h:
EXIT_SUCCESS (usually 0) and EXIT_FAILURE (non-zero)

▪ “Crashes” trigger signals from OS (e.g., SIGSEGV for segfault)

STYLE
TIP

23

CSE333, Summer 2023L01: Intro, Getting Started in C

Function Definitions

❖ Generic format:

// sum of integers from 1 to max

int SumTo(int max) {

 int i, sum = 0;

 for (i = 1; i <= max; i++) {

 sum += i;

 }

 return sum;

}

returnType fname(type param1, …, type paramN) {

 // statements

}

24

CSE333, Summer 2023L01: Intro, Getting Started in C

Function Ordering

❖ You shouldn’t call a function that hasn’t been declared yet

int main(int argc, char** argv) {

 printf(“SumTo(5) is: %d\n", SumTo(5));

 return EXIT_SUCCESS;

}

// sum of integers from 1 to max

int SumTo(int max) {

 int i, sum = 0;

 for (i = 1; i <= max; i++) {

 sum += i;

 }

 return sum;

}

sum_badorder.c

Note: code examples from slides are posted on
the course website for you to experiment with!

25

CSE333, Summer 2023L01: Intro, Getting Started in C

Solution 1: Reverse Ordering

❖ Simple solution; however, imposes ordering restriction on
writing functions (who-calls-what?)

// sum of integers from 1 to max

int SumTo(int max) {

 int i, sum = 0;

 for (i = 1; i <= max; i++) {

 sum += i;

 }

 return sum;

}

int main(int argc, char** argv) {

 printf(“SumTo(5) is: %d\n", SumTo(5));

 return EXIT_SUCCESS;

}

sum_betterorder.c

26

CSE333, Summer 2023L01: Intro, Getting Started in C

Solution 2: Function Declaration

❖ Teaches the compiler the arguments and return types;
function definitions can then be in a logical order

▪ Function comment usually by the prototype

sum_declared.c // sum of integers from 1 to max

int SumTo(int max); // func prototype

int main(int argc, char** argv) {

 printf(“SumTo(5) is: %d\n", SumTo(5));

 return EXIT_SUCCESS;

}

int SumTo(int max) {

 int i, sum = 0;

 for (i = 1; i <= max; i++) {

 sum += i;

 }

 return sum;

}

STYLE
TIP

27

CSE333, Summer 2023L01: Intro, Getting Started in C

Function Declaration vs. Definition

❖ C/C++ make a careful distinction between these two

❖ Definition: the thing itself

▪ e.g., code for function, variable definition that creates storage

▪ Must be exactly one definition of each thing (no duplicates)

❖ Declaration: description of a thing

▪ e.g., function prototype, external variable declaration

• Often in header files and incorporated via #include

• Should also #include declaration in the file with the actual
definition to check for consistency

▪ Needs to appear in all files that use that thing

• Should appear before first use
28

CSE333, Summer 2023L01: Intro, Getting Started in C

333 Workflow Aids/Upgrades

❖ See Linux → Text Editors on website for how to configure
vim or VS Code for use in this class

▪ From vi/vim, can compile and execute code without ever leaving
the editor using ":! <cmd>"

▪ For VS Code, can connect to attu remotely and take advantage of
the IDE features

▪ From either text editor, you will want to get comfortable
navigating and editing multiple files simultaneously

❖ We will learn the basics of Makefiles to simplify the
compilation steps into the command make

29

CSE333, Summer 2023L01: Intro, Getting Started in C

To-do List

❖ Make sure you’re registered on Canvas, Ed Discussion,
Gradescope, and Poll Everywhere (all uw.edu email address)

❖ Explore the website thoroughly: http://cs.uw.edu/333

❖ Computer setup: CSE lab, attu, or 23su CSE Linux VM

❖ Pre-Quarter Survey (Canvas) due Friday @ 11:59 pm

❖ Exercise 1 is due Friday @ 1 pm
▪ Find exercise spec on website, submit via Gradescope

▪ Hint: look at documentation for stdlib.h, string.h, and
inttypes.h

❖ Homework 0 (Gitlab) is due Monday @ 11:59 pm

▪ Gitlab email sent when repos created – no action needed

▪ Make a private Ed post if you don’t have a repo or the hw0 files
30

http://cs.uw.edu/333
http://www.cplusplus.com/reference/cstdlib/
http://www.cplusplus.com/reference/cstring/
http://www.cplusplus.com/reference/cinttypes/

	Slide 1: Intro, Getting Started in C CSE 333 Summer 2023
	Slide 2: Introductions: Course Staff
	Slide 3: Introductions: Students
	Slide 4: Lecture Outline
	Slide 5: Communication
	Slide 6: In-Person Office Hours
	Slide 7: Course Components
	Slide 8: Grading
	Slide 9: Academic Integrity and Student Conduct
	Slide 10: Lecture Outline
	Slide 11: Layers of Computing Below Programming
	Slide 12: Layers of Computing Below Programming
	Slide 13: Systems Programming
	Slide 14: Discipline?!?
	Slide 15: Style Grading in 333
	Slide 16: Lecture Outline
	Slide 17: C Data Structures Review
	Slide 18: Generic C Program Layout
	Slide 19: C Syntax: main
	Slide 20: C Syntax: main
	Slide 21: How much memory would you expect to be allocated for argv & all of its pointed-to arrays?
	Slide 22: Printing in C
	Slide 23: Error Handling
	Slide 24: Function Definitions
	Slide 25: Function Ordering
	Slide 26: Solution 1: Reverse Ordering
	Slide 27: Solution 2: Function Declaration
	Slide 28: Function Declaration vs. Definition
	Slide 29: 333 Workflow Aids/Upgrades
	Slide 30: To-do List

