
CSE333, Summer 2023L01: Intro, Getting Started in C

Intro, Getting Started in C
CSE 333 Summer 2023
Intro, Getting Started in C
CSE 333 Summer 2023

Instructor: Timmy Yang

Teaching Assistants:
Jennifer Xu Leanna Nguyen Pedro Amarante
Sara Deutscher Tanmay Shah

CSE333, Summer 2023L01: Intro, Getting Started in C

 Your Instructor: just call me Timmy
 Part-Time Lecturer
 First-time lecturing! Learning along with you

 TAs:

 Available in section, office hours, and discussion board

 More than anything, we want you to feel…
Comfortable and welcome in this space
Able to learn and succeed in this course
Comfortable reaching out if you need help or want change

Introductions: Course Staff

2

Jennifer Leanna Pedro Sara Tanmay

CSE333, Summer 2023L01: Intro, Getting Started in C

Introductions: Students

 ~60 students registered

 Expected background
 Prereq: CSE 351 – C, pointers, memory model, linker, system calls
 Indirect Prereq: CSE 143 – Classes, Inheritance, Basic Data

structures, and general good style practices
 CSE 391 or Linux skills needed for CSE 351 assumed

 Get to know each other! Help each other out!
 Working well with others is a valuable life skill
 Take advantage of partner work, where permissible, to learn, not

just get a grade
• Good chance to learn collaboration tools and tricks

3

CSE333, Summer 2023L01: Intro, Getting Started in C

Lecture Outline

 Course Policies
 https://courses.cs.washington.edu/courses/cse333/23su/syllabus.html

 Digest here, but you must read the full details online

 Course Introduction
 Getting Started in C
 What do you need to write a C program from scratch?

4

CSE333, Summer 2023L01: Intro, Getting Started in C

Communication

 Website: http://cs.uw.edu/333
 Schedule, policies, materials, assignments, etc.

 Discussion: https://edstem.org/us/courses/40647
 Announcements made here
 Ask and answer questions – staff will monitor and contribute

 Office Hours: Google Sheet queue for both in-person and
virtual OHs, which are spread throughout the week

 1-on-1 Meetings: can request a limited number of
appointments via Google Form

 Anonymous feedback

5

CSE333, Summer 2023L01: Intro, Getting Started in C

In-Person Office Hours

 Ex: Allen 3rd floor breakout
 Up the stairs in the CSE

Atrium (Allen Center,
not Gates)

 At the top of two flights,
the open area with the
whiteboard wall is the
3rd floor breakout!

6

CSE333, Summer 2023L01: Intro, Getting Started in C

Course Components

 Lectures (26)
 Introduce the concepts; take notes

 Sections (9)
 Applied concepts, important tools and skills for assignments,

clarification of lectures, quiz review and preparation

 Programming Exercises (12)
 One due roughly every 4-5 days
 We are checking for: correctness, memory issues, code style/quality

 Programming Project (0+4)
 Warm-up, then 4 “homework” that build on each other

 Take-home Quizzes (4)
 Initial dates on website under Quizzes, encourage review of course

content
7

CSE333, Summer 2023L01: Intro, Getting Started in C

Grading

 Exercises: 30% total
 Submitted via Gradescope (under your UW email)
 Graded on correctness and style by autograders and TAs

 Projects: 43% total
 Submitted via GitLab; must tag commit that you want graded
 Binaries provided if you didn’t get previous part working
 Graded on test suite, manual tests, and style

 Quizzes: 24% total (~8% each)
 Take-home; short answer questions based on assignments

 Effort, Participation, and Altruism: 3%
 Many ways to earn credit here, relatively lenient on this

8

CSE333, Summer 2023L01: Intro, Getting Started in C

Academic Integrity and Student Conduct

 I trust you implicitly and will follow up if that trust is
violated
 In short: don’t attempt to gain credit for something you didn’t do

and don’t help others do so, either

 This does not mean suffer in silence – learn from the
course staff and peers, talk, share ideas; but don’t share
or copy work that is supposed to be yours
 Partners allowed this quarter on programming assignments!

 If you find yourself in a situation where you are tempted
to perform academic misconduct, please reach out to
Timmy to explain your situation instead
 See the Extenuating Circumstances section of the syllabus

9

CSE333, Summer 2023L01: Intro, Getting Started in C

Lecture Outline

 Course Policies
 https://courses.cs.washington.edu/courses/cse333/23su/syllabus/
 Summary here, but you must read the full details online

 Course Introduction
 Getting Started in C
 What do you need to write a C program from scratch?

10

CSE333, Summer 2023L01: Intro, Getting Started in C

Layers of Computing Below Programming

Software Applications
(written in Java, Python, C, etc.)

Programming Languages & Libraries
(e.g., Java Runtime Env, C Standard Lib)

HW/SW interface

OS/App interface
Operating System

(e.g., Linux, MacOS, Windows)

Hardware
(e.g., CPU, memory, disk, network, peripherals)

11

CSE333, Summer 2023L01: Intro, Getting Started in C

Layers of Computing Below Programming

Software Applications

HW/SW interface

OS/App interface
Operating System

(e.g., Linux, MacOS, Windows)

Hardware
(e.g., CPU, memory, disk, network, peripherals)

12

C application

C standard
library (glibc)

C++ STL/boost/
standard library

C++ application Java application

JRE

CSE333, Summer 2023L01: Intro, Getting Started in C

Systems Programming

 The programming skills, engineering discipline, and
knowledge you need to build a system

 Programming: C / C++

 Discipline: testing, debugging, performance analysis

 Knowledge: long list of interesting topics
• Concurrency, OS interfaces and semantics, techniques for consistent

data management, distributed systems algorithms, …
• Most important: a deep(er) understanding of the “layer below”

13

CSE333, Summer 2023L01: Intro, Getting Started in C

Discipline?!?

 Cultivate good habits, encourage clean code
 Coding style conventions
 Unit testing, code coverage testing, regression testing
 Reading/writing documentation (code comments, design docs)
 Code reviews

 Will take you a lifetime to learn, but oh-so-important,
especially for systems code
 Avoid write-once, read-never code
 Treat assignment submissions in this class as production code

• Comments must be updated, no commented-out code, no extra
(debugging) output

14

STYLE
TIP

CSE333, Summer 2023L01: Intro, Getting Started in C

Style Grading in 333

 A style guide is a “set of standards for the writing,
formatting, and design of documents” – in this case, code

 No style guide is perfect
 Inherently limiting to coding as a form of expression/art
 Rules should be motivated (e.g., consistency, performance, safety,

readability), even if not everyone agrees

 In 333, we will use a subset of the Google C++ Style Guide
 Want you to experience adhering to a style guide
 Hope you view these more as design decisions to be considered

rather than rules to follow to get a grade
 We acknowledge that judgments of language implicitly encode

certain values and not others
15

CSE333, Summer 2023L01: Intro, Getting Started in C

Lecture Outline

 Course Policies
 https://courses.cs.washington.edu/courses/cse333/23su/syllabus/
 Summary here, but you must read the full details online

 Course Introduction
 Getting Started in C
 What do you need to write a C program from scratch?

16

CSE333, Summer 2023L01: Intro, Getting Started in C

C Data Structures Review

 C does not support objects!

 Arrays are contiguous chunks of memory
 No implicit initialization; declaration just gives you “mystery data”
 Don’t know their own length, so no bounds checking

 C-strings are null-terminated arrays of characters
 Example:
 string.h has helpful library/utility functions

• Documentation: http://www.cplusplus.com/reference/cstring/

 Structs are collections of fields (variables)
 The most object-like, but no methods

17

char x[] = "hi\n";

CSE333, Summer 2023L01: Intro, Getting Started in C

Generic C Program Layout

#include <system_files>
#include "local_files"

#define macro_name macro_expr

/* declare functions */
/* declare external variables & structs */

int main(int argc, char* argv[]) {
/* the innards */

}

/* define other functions */

STYLE
TIP

18

CSE333, Summer 2023L01: Intro, Getting Started in C

C Syntax: main

 To get command-line arguments in main, use:
 int main(int argc, char* argv[])

 What does this mean?
 argc contains the number of strings on the command line (the

executable name counts as one, plus one for each argument)

 argv is an array containing pointers to the arguments as strings
(more on pointers later)

 Example: $./foo hello 87
 argc = 3

 argv[0]="./foo", argv[1]="hello", argv[2]="87"

int main(int argc, char* argv[])

19

CSE333, Summer 2023L01: Intro, Getting Started in C

C Syntax: main

 To get command-line arguments in main, use:
 int main(int argc, char* argv[])

 Advantages:
 Easy to implement – keyboard presses are passed as characters
 Flexible – can handle any number of arguments

 Disadvantages:
 Input checking needed by programmer – prevent user misuse

• Common C idiom is to print back usage messages

 Data conversion might be needed – if argument is not intended to
be used as characters
• See Exercise 1!

int main(int argc, char* argv[])

20

CSE333, Summer 2023L01: Intro, Getting Started in C

A. 44 bytes
B. 48 bytes
C. 52 bytes
D. 56 bytes
E. We’re lost…

21

pollev.com/cse333

How much memory would you expect to be
allocated for argv & all of its pointed-to arrays?

$ cp –r dir1 dir2

CSE333, Summer 2023L01: Intro, Getting Started in C

Printing in C

 int printf(const char* format, ...);
 Can check documentation to learn about (1) parameters,

(2) the return value, and (3) error handling
• https://www.cplusplus.com/reference/cstdio/printf/

 Very important to use correct format specifier for the value you
want to print, otherwise implicit casting will occur
•

22

int printf(const char* format, ...);

CSE333, Summer 2023L01: Intro, Getting Started in C

Error Handling

 Errors and Exceptions
 C does not have exception handling (no try/catch)
 Errors are returned as integer error codes from functions

• Because of this, error handling is ugly and inelegant
• For readability, CONSTANT_NAMES are defined to abstract away the

actual integer values – need to look up in documentation
 Global variable errno holds value of last system error

 Status codes and signals
 Processes exit (e.g., return from main) with status code

• Standard codes found in stdlib.h:
EXIT_SUCCESS (usually 0) and EXIT_FAILURE (non-zero)

 “Crashes” trigger signals from OS (e.g., SIGSEGV for segfault)

STYLE
TIP

23

CSE333, Summer 2023L01: Intro, Getting Started in C

Function Definitions

 Generic format:

// sum of integers from 1 to max
int SumTo(int max) {

int i, sum = 0;

for (i = 1; i <= max; i++) {
sum += i;

}

return sum;
}

returnType fname(type param1, …, type paramN) {
// statements

}

24

CSE333, Summer 2023L01: Intro, Getting Started in C

Function Ordering

 You shouldn’t call a function that hasn’t been declared yet

int main(int argc, char** argv) {
printf(“SumTo(5) is: %d\n", SumTo(5));
return EXIT_SUCCESS;

}

// sum of integers from 1 to max
int SumTo(int max) {
int i, sum = 0;

for (i = 1; i <= max; i++) {
sum += i;

}
return sum;

}

sum_badorder.c

Note: code examples from slides are posted on
the course website for you to experiment with!

25

CSE333, Summer 2023L01: Intro, Getting Started in C

Solution 1: Reverse Ordering

 Simple solution; however, imposes ordering restriction on
writing functions (who-calls-what?)

// sum of integers from 1 to max
int SumTo(int max) {
int i, sum = 0;

for (i = 1; i <= max; i++) {
sum += i;

}
return sum;

}

int main(int argc, char** argv) {
printf(“SumTo(5) is: %d\n", SumTo(5));
return EXIT_SUCCESS;

}

sum_betterorder.c

26

CSE333, Summer 2023L01: Intro, Getting Started in C

Solution 2: Function Declaration

 Teaches the compiler the arguments and return types;
function definitions can then be in a logical order
 Function comment usually by the prototype

sum_declared.c // sum of integers from 1 to max
int SumTo(int max); // func prototype

int main(int argc, char** argv) {
printf(“SumTo(5) is: %d\n", SumTo(5));
return EXIT_SUCCESS;

}

int SumTo(int max) {
int i, sum = 0;
for (i = 1; i <= max; i++) {
sum += i;

}
return sum;

}

STYLE
TIP

27

CSE333, Summer 2023L01: Intro, Getting Started in C

Function Declaration vs. Definition

 C/C++ make a careful distinction between these two

 Definition: the thing itself
 e.g., code for function, variable definition that creates storage
 Must be exactly one definition of each thing (no duplicates)

 Declaration: description of a thing
 e.g., function prototype, external variable declaration

• Often in header files and incorporated via #include
• Should also #include declaration in the file with the actual

definition to check for consistency

 Needs to appear in all files that use that thing
• Should appear before first use

28

CSE333, Summer 2023L01: Intro, Getting Started in C

333 Workflow Aids/Upgrades

 See Linux Text Editors on website for how to configure
vim or VS Code for use in this class
 From vi/vim, can compile and execute code without ever leaving

the editor using ":! <cmd>"
 For VS Code, can connect to attu remotely and take advantage of

the IDE features
 From either text editor, you will want to get comfortable

navigating and editing multiple files simultaneously

 We will learn the basics of Makefiles to simplify the
compilation steps into the command make

29

CSE333, Summer 2023L01: Intro, Getting Started in C

To-do List

 Make sure you’re registered on Canvas, Ed Discussion,
Gradescope, and Poll Everywhere (all uw.edu email address)

 Explore the website thoroughly: http://cs.uw.edu/333

 Computer setup: CSE lab, attu, or 23su CSE Linux VM

 Pre-Quarter Survey (Canvas) due Friday @ 11:59 pm

 Exercise 1 is due Friday @ 1 pm
 Find exercise spec on website, submit via Gradescope
 Hint: look at documentation for stdlib.h, string.h, and
inttypes.h

 Homework 0 (Gitlab) is due Monday @ 11:59 pm
 Gitlab email sent when repos created – no action needed
 Make a private Ed post if you don’t have a repo or the hw0 files

30

