Networks Introduction
CSE 333 Spring 2023

Instructor: Chris Thachuk

Teaching Assistants:
Byron Jin CJ Reith
Deeksha Vatwani Edward Zhang
Humza Lala Lahari Nidadavolu
Noa Ferman Saket Gollapudi
Seulchan (Paul) Han Timmy Yang
Tim Mandzyuk Wui Wu
Lecture Outline

❖ Introduction to Networks
 ▪ Layers upon layers upon layers...
Today’s Goals

❖ Networking is a very common programming feature
 ▪ You will likely have to create a program that will read/write over the network at some point in your career

❖ We want to give you a basic, high-level understanding of how networks work before you use them
 ▪ Lecture will be more “story-like;” we will purposefully skip over most of the details, but hopefully you will learn something new about the Internet today!
 ▪ Take CSE 461 if you want to know more about the implementations of networks (the course is pretty cool 😊)

❖ Let’s also examine “the network” as a system
Networks From 10,000 ft

clients

servers
“Network” Latency is Highly Variable

- Jeff Dean’s “Numbers Everyone Should Know” (LADIS ‘09)

<table>
<thead>
<tr>
<th>Latency Category</th>
<th>Time (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 cache reference</td>
<td>0.5</td>
</tr>
<tr>
<td>Branch mispredict</td>
<td>5</td>
</tr>
<tr>
<td>L2 cache reference</td>
<td>7</td>
</tr>
<tr>
<td>Mutex lock/unlock</td>
<td>100</td>
</tr>
<tr>
<td>Main memory reference</td>
<td>100</td>
</tr>
<tr>
<td>Compress 1K bytes with Zippy</td>
<td>10,000</td>
</tr>
<tr>
<td>Send 2K bytes over 1 Gbps network</td>
<td>20,000</td>
</tr>
<tr>
<td>Read 1 MB sequentially from memory</td>
<td>250,000</td>
</tr>
<tr>
<td>Round trip within same datacenter</td>
<td>500,000</td>
</tr>
<tr>
<td>Disk seek</td>
<td>10,000,000</td>
</tr>
<tr>
<td>Read 1 MB sequentially from network</td>
<td>10,000,000</td>
</tr>
<tr>
<td>Read 1 MB sequentially from disk</td>
<td>30,000,000</td>
</tr>
<tr>
<td>Send packet CA->Netherlands->CA</td>
<td>150,000,000</td>
</tr>
</tbody>
</table>
The Physical Layer

- Individual bits are modulated onto a wire or transmitted over radio
 - Physical layer specifies how bits are encoded at a signal level
 - Many choices, e.g., encode “1” as +1v, “0” as -0v; or “0”=+1v, “1”=-1v, ...

![Diagram showing modulation of bits into a waveform](image)

- Encoding: 0101 → waveform
- Transmission媒介:
 - Copper wire (electrons)
 - Optical cable (light)
 - Radio frequency band (waves)

![Diagram showing physical connection between computers](image)
Materials Matter – Latency

- Fiber optic cables are lower-latency and higher-bandwidth than traditional copper wiring
 - Much of the internet’s “long haul” data is transmitted on these
 - (signal attenuation is much better too)

- Is it faster to send 1 person from UW to ...
 - Downtown Seattle?
 - Ballard?

\textit{not just distance, but also speed limit & number of lanes mode of transportation, route, traffic, etc.}
The Data Link Layer

- Multiple computers on a LAN contend for the network medium
 - Media access control (MAC) specifies how computers cooperate
 - Link layer also specifies how bits are “packetized” and network interface controllers (NICs) are addressed

MAC addresses:
- 00:1d:4f:47:0d:48
- 4c:44:1e:8f:12:0e
- 7a:37:8e:fc:1a:ea
- de:ad:be:ef:ca:fe
- 01:23:32:10:ab:ba

Diagram:
- Computers with NICs connected to an ethernet cable.
- Ethernet header with destination address, source address, and data payload.
- Data link layer transitions to physical layer.
The Network Layer (IP)

- Internet Protocol (IP) routes packets across multiple networks
 - Every computer has a unique IP address
 - Individual networks are connected by routers that span networks

IPv4 addresses:

- 128.95.10.55
- 128.95.10.72
- 128.95.10.95

Networks:

- Network 1: 128.95.10.1
- Network 2: 128.95.4.1

Hosts:

- Host 1: 128.95.4.3
- Host 2: 128.95.4.10
- Host 3: 128.95.4.12

Networks:

- Network 1: 128.95.10.1
- Network 2: 128.95.4.1

Data Link:

- Data Link 1: 128.95.4.3
- Data Link 2: 128.95.4.10

Physical:

- Physical Link 1: 128.95.4.3
- Physical Link 2: 128.95.4.10
The Network Layer (IP)

- There are protocols to:
 - Let a host map an IP to MAC address on the same network
 - Let a router learn about other routers to get IP packets one step closer to their destination
The Network Layer (IP)

- Packet encapsulation:
 - An IP packet is encapsulated as the payload of an Ethernet frame
 - As IP packets traverse networks, routers pull out the IP packet from an Ethernet frame and plunk it into a new one on the next network
Distance Matters – Latency

- Distances within a single datacenter are smaller than distances across continents
- Even within a datacenter, distances can sometimes matter
Topology Matters – Latency, Reliability

- Some places are surprisingly well- or poorly-connected to “backbone” infrastructure like fiber optic cables

- Unintuitive topology can create interesting failures
 - *e.g.*, 2006 7.0-magnitude Hengchun Earthquake disrupted communications to Singapore, Philippines, Thailand, China, etc. for a month
Reflect and Discuss

❖ Does this system of submarine cable connections seem ‘optimal’ to you?
❖ If not, who influences the decision-making process and what might their motivations be?
 ▪ Explore the map here: https://www.submarinecablemap.com/
Submarine Cable Network Today

- ~436 fiber optic cables currently in use
 - Supports 99% of transoceanic communication
 - Primarily laid during early 2000’s “fiber boom”, but still occasional new cables and decommissioned cables

- Owners
 - Telecom carriers
 - Content providers

- Users
 - You and many others...

- Explore the network and its history: http://www.surfacing.in
The Transport Layer

- Provides an interface to treat the network as a *data stream*
- Provides different protocols to interface between source and destination:
 - *e.g.*, Transmission Control Protocol (TCP), User Datagram Protocol (UDP)
 - These protocols still work with packets, but manages their order, reliability, multiple applications using the network...

Note that we have the **abstraction** of a direct connection
The Transport Layer (TCP)

❖ Transmission Control Protocol (TCP):
 • Provides applications with **reliable, ordered, congestion-controlled byte streams**
 • Sends stream data as multiple IP packets (differentiated by sequence numbers) and retransmits them as necessary
 • When receiving, puts packets back in order and detects missing packets
 • A single host (IP address) can have up to \(2^{16} = 65,535 \) “ports”
 • Kind of like an apartment number at a postal address (your applications are the residents who get mail sent to an apt. #)

![Layer Diagram](image)
The Transport Layer (TCP)

- Packet encapsulation – one more nested layer!

Diagram:
- Ethernet header
 - IP header
 - TCP header
 - TCP chunk 1
 - src, dst, port
 - + seq #
 - IP payload
 - TCP chunk 2
 - IP payload
 - Ethernet payload
- Transport
 - Network
 - Data link
 - Physical
The Transport Layer (TCP)

- Applications use OS services to establish TCP streams:
 - The “Berkeley sockets” API
 - A set of OS system calls (part of POSIX for Linux)
 - Clients `connect()` to a server IP address + application port number
 - Servers `listen()` for and `accept()` client connections
 - Clients and servers `read()` and `write()` data to each other

```
transport
network
data link
physical
```

```
transport
network
data link
physical
```
The Transport Layer (UDP)

- User Datagram Protocol (UDP):
 - Provides applications with **unreliable** packet delivery
 - UDP is a really thin, simple layer on top of IP
 - Datagrams still are fragmented into multiple IP packets
The Transport Layer

TCP:

UDP:
The (Mostly Missing) Layers 5 & 6

❖ Layer 5: Session Layer
 - Supposedly handles establishing and terminating application sessions
 - Remote Procedure Call (RPC) kind of fits in here

❖ Layer 6: Presentation Layer
 - Supposedly maps application-specific data units into a more network-neutral representation
 - Encryption (SSL) kind of fits in here
The Application Layer

- Application protocols
 - The format and meaning of messages between application entities
 - e.g., HTTP is an application-level protocol that dictates how web browsers and web servers communicate
 - HTTP is implemented on top of TCP streams
The Application Layer

- Packet encapsulation:
The Application Layer

❖ Packet encapsulation:

<table>
<thead>
<tr>
<th>ethernet header</th>
<th>IP header</th>
<th>TCP header</th>
<th>HTTP header</th>
<th>HTTP payload (e.g., chunk of HTML page)</th>
</tr>
</thead>
</table>
The Application Layer

- Popular application-level protocols:
 - **DNS**: translates a domain name (*e.g.*, www.google.com) into one or more IP addresses (*e.g.*, 74.125.197.106)
 - Domain Name System
 - An hierarchy of DNS servers cooperate to do this
 - **HTTP**: web protocols
 - Hypertext Transfer Protocol
 - **SMTP, IMAP, POP**: mail delivery and access protocols
 - **SSH**: secure remote login protocol
 - Secure Shell
 - **bittorrent**: peer-to-peer, swarming file sharing protocol
netcat demo (if time)

- netcat (nc) is “a computer networking utility for reading from and writing to network connections using TCP or UDP”
 - **Listen on port:** `nc -l <port>`
 - **Connect:** `nc <IPaddr> <port>`
 - Local host: `127.0.0.1`