W UNIVERSITY of WASHINGTON L28: Intro to Rust CSE333, Autumn 2023

Introduction to Rust
CSE 333 Autumn 2023

Lecturer: Chris Thachuk

W UNIVERSITY of WASHINGTON L28: Intro to Rust CSE333, Autumn 2023

Lecture Outline

¢ A (very brief) tour of Rust
= Not comprehensive, but will highlight interesting features

= Basic examples directly from “The Book” and “Rust by Example”

= Resources to learn Rust listed on last slide

+ Demo project: designing orthogonal strands of DNA

W UNIVERSITY of WASHINGTON L28: Intro to Rust CSE333, Autumn 2023

Logistics

+ Ex12 due tonight
Hw4 due Wednesday (12/4)
Section this week (course wrap-up)
+ Last bonus lecture today; no lectures on Wed & Fri

Exam prep

CSE333, Autumn 2023

YA/ UNIVERSITY of WASHINGTON L28: Intro to Rust

What is Rust?

7
0’0

Rust is a modern systems programming language focusing
on safety, speed, and concurrency. It accomplishes these
goals by being memory safe without using garbage

collection.
— Rust By Example

Rust programmers are called ‘Rustaceans’

YA/ UNIVERSITY of WASHINGTON

Rust

Created in 2006 by Graydon Hoare
Sponsored by Mozilla in 2009

Multi-paradigm, general purpose programming language

Characteristics

L28: Intro to Rust CSE333, Autumn 2023

THE RUST
PROGRAMMING
LANGUAGE

Adopted by major companies and governance via Rust Foundation

Rust will become the second ‘main’ language in Linux Kernel 6.1

Aims to support efficient, fearless, concurrent systems programming
Memory safe with rich type system
Ergonomic developer experience

Interoperable with C/C++

YA/ UNIVERSITY of WASHINGTON

L28: Intro to Rust

Hello World in Rust

fn main() {

}

println!("Hello, World!");

CSE333, Autumn 2023

[fn main() {

let course_num:

let unit = "CSE";

ulé =

let term = String::from("Autumn 2023");

println!("Hello {} {}, {} edition", unit, course_num, term);

$ rustc hello cse333.rs
$./hello cse333

Hello CSE 333,

Autumn 2023 edition

hello_cse333.rs

YA/ UNIVERSITY of WASHINGTON L28: Intro to Rust

Scalar Types

e signed integers: i8, i16, 132, 164, 1128 and isize (pointer size)

e unsigned integers: us, ul6, u32, u64, ul28 and usize (pointer size)
e floating point: £32, £64

e char Unicode scalar values like 'a', 'o' and '=' (4 bytes each)

® bool either true or false

e and the unit type (), whose only possible value is an empty tuple: ()

CSE333, Autumn 2023

r»fn main() {

let logical: bool = true;
let a_float: f64 = :

let an_integer = 5i32;

let mut inferred_type = ;
inferred_type = 3333333333i64;

W UNIVERSITY of WASHINGTON L28: Intro to Rust CSE333, Autumn 2023

Compound Types
e arrayslike [1, 2, 3]

e tupleslike (1, true)

Mutability

e Variables are immutable by default.

fn main() {
let num = ;
let mut year = ;

year)

year = true;

num = :

YA/ UNIVERSITY of WASHINGTON

Structures (3 types)

e Tuple structs: named tuples
e Classic C structs
e Unit structs: field-less

(useful for generics)

(

L28: Intro to Rust

CSE333, Autumn 2023

struct Unit;

struct Pair(i32, f32);

struct Point {

x: 32,
y: 32,
}
fn main() {
let _unit = Unit;
let pair = Pair(1,);
let point = Point { x: , Y }i
let year = point.y;
}

https://en.wikipedia.org/wiki/Struct_(C_programming_language)

W UNIVERSITY of WASHINGTON L28: Intro to Rust CSE333, Autumn 2023

Functions

e declared using the £n keyword
e arguments are type annotated

e if the function returns a value, the return type must be specified after an arrow --

()
fn main() {
let x = plus_one(5);

println! ("The value of x is: {}", x);

'

fn plus_one(x: i32) -> i32 {
X +

'

10

YA/ UNIVERSITY of WASHINGTON L28: Intro to Rust

if / else

boolean condition doesn't need to be surrounded by parentheses

each condition is followed by a block

CSE333, Autumn 2023

if-else conditionals are expressions, and, all branches must return the same type

e

fn main() {
let n = 5;
if n < {
print!("{} is negative", n);
} else if n > {
print!("{} is positive", n);
} else {
print!("{} is zero", n);
}

11

YA/ UNIVERSITY of WASHINGTON

L28: Intro to Rust

if / else (cont’d)

CSE333, Autumn 2023

e boolean condition doesn't need to be surrounded by parentheses
e each condition is followed by a block
e if-else conditionals are expressions, and, all branches must return the same type
r ™
fn main() {
let n = 5;
let big_n = if n < && n > - {
println!("{} is a small number, increase ten-fold", n);
*n
} else {
println!("{} is a big number, halve the number");
n /
b
println!("{} -> {}", n, big_n);
¥
. y,

12

W UNIVERSITY of WASHINGTON L28: Intro to Rust CSE333, Autumn 2023

\Alf1i|€3 /%n main() { A

let mut n = 1;
e |oop while condition is true
* —FizzBuzz while n < 101 {
if n % 15 == 0 {
println!("fizzbuzz");
} else if n % 3 == 0 {
println!("fizz");
} else if n % 5 == 0 {
println! ("buzz");
} else {
println!("{}", n);

13

W UNIVERSITY of WASHINGTON L28: Intro to Rust CSE333, Autumn 2023

for-in

e for traverses an iterator

e — FizzBuzz with for-in

e create iterator and traverse

[n main() {
let names = vec!["Alice", "Frank",

for name in names.iter() {
println!("Hello {}", name),
}

}

fn main() A A
for n in 1..101 {
if n % 15 == 0 {
println! ("fizzbuzz");
} else if n % 3 == 0 {
println! ("fizz");
} else if n % 5 == 0 {
println!("buzz");
} else {
println!("{}", n);
}
b
\} J
"Ferris"];

14

W UNIVERSITY of WASHINGTON L28: Intro to Rust CSE333, Autumn 2023

match

e powerful pattern matching
e first matching arm is evaluated

e all possible values must be covered

fn main() {
let number = ;

match number {
=> println!("One!"),
| | | | => println!("This is a small prime"),
..=19 => println!("A teen"),

=> println!("Ain't special"),

YA/ UNIVERSITY of WASHINGTON L28: Intro to Rust

Associated functions & methods

associated functions are functions that are defined on a type

methods are associated functions that are called on a particular instance of a type

CSE333, Autumn 2023

struct Point {
x: fo64,
y: f64,

impl Point {

fn new(x: fé4, y: f64) -> Point {
Point { x: x, y: vy }
}

fn translate(&mut self, x: f64, y: f64) {
self.x += x;
self.y += vy;

~N

16

W UNIVERSITY of WASHINGTON L28: Intro to Rust CSE333, Autumn 2023

Values, variables, and pointers

)/
S

values are stored in a place

a place is a location that can hold a value
+ e.g.on the stack, on the heap, etc

« avariable is named location on the stack

*

)/
S

*

let x = ;

stack

W UNIVERSITY of WASHINGTON L28: Intro to Rust CSE333, Autumn 2023

Values, variables, and pointers

)/
S

*

values are stored in a place

a place is a location that can hold a value
+ e.g.on the stack, on the heap, etc

« avariable is named location on the stack

)/
S

*

let x
let y ;

stack

W UNIVERSITY of WASHINGTON L28: Intro to Rust CSE333, Autumn 2023

Values, variables, and pointers

values are stored in a place

a place is a location that can hold a value
+ e.g.on the stack, on the heap, etc

a variable is named location on the stack
a pointer holds the address of a place

X/
L 4

7/
L 4

7/
L 4

X/
L 4

let x
let y ;

i1
=

let w

&X;

stack

YA/ UNIVERSITY of WASHINGTON

Values, variables, and pointers

X/
L 4

7/
L 4

7/
L 4

X/
L 4

L28: Intro to Rust

values are stored in a place

a place is a location that can hold a value
+ e.g.on the stack, on the heap, etc

a variable is named location on the stack
a pointer holds the address of a place

-
let x =
let y =
let w = &x;
let mut z = &x;

CSE333, Autumn 2023

stack

20

YA/ UNIVERSITY of WASHINGTON

Values, variables, and pointers

X/
L 4

7/
L 4

7/
L 4

X/
L 4

L28: Intro to Rust

values are stored in a place

a place is a location that can hold a value
e.g. on the stack, on the heap, etc

a variable is named location on the stack
a pointer holds the address of a place

/7
0’0

let
let

let

let

CSE333, Autumn 2023

stack

21

W UNIVERSITY of WASHINGTON L28: Intro to Rust CSE333, Autumn 2023

Ownership (Rust’s secret sauce)

+ Ownership Rules:
= Each value in Rust has an owner
= There can only be one owner at a time
= When the owner goes out of scope, the value is dropped

borrow
checker
L

22

YA/ UNIVERSITY of WASHINGTON L28: Intro to Rust

Ownership and moves

+ note: box is a place we create on the heap

7

fn double_value(x: Box<i32>) {
*x = 2 % (*x);

}

fn main() {

let mut x = Box::new() ;
double_value(x);

stack heap

CSE333, Autumn 2023

Does this compile?

23

YA/ UNIVERSITY of WASHINGTON

L28: Intro to Rust

Ownership and moves

+ note: box is a place we create on the heap

fn double_value(x: Box<i32>) {
*X = 2 % (*x);

fn main() {
let mut x = Box::new();
double_value(x);

error[E@594]: cannot assign to "*x', as 'x 1s not declared as mutable

--> src/main.rs:3:5

|
2

| fn double_value(x: Box<i32>) {

| - help: consider changing this to be mutable: "mut x°
3 | *x = 2 % (*x);

| ANANAANANAANANANAANANANAN Cannot aSSign

CSE333, Autumn 2023

Does this compile?

No!

24

YA/ UNIVERSITY of WASHINGTON L28: Intro to Rust

Ownership and moves

+ note: box is a place we create on the heap

p
fn double_value(mut x: Box<i32>) {
*x = 2 % (*x);

}

fn main() {
let mut x = Box::new() ;
double_value(x);

CSE333, Autumn 2023

Does this compile?

25

YA/ UNIVERSITY of WASHINGTON L28: Intro to Rust

Ownership and moves

+ note: box is a place we create on the heap

p
fn double_value(mut x: Box<i32>) {
*x = 2 % (*x);

}

fn main() {
let mut x = Box::new() ;
double_value(x);

CSE333, Autumn 2023

Does this compile?

Yes!

26

YA/ UNIVERSITY of WASHINGTON L28: Intro to Rust

Ownership and moves

+ note: box is a place we create on the heap

p
fn double_value(mut x: Box<i32>) {
*x = 2 % (*x);

}

fn main() {
let mut x = Box::new() ;
double_value(x);
println!("What happens if I take 333 twice?: {}", x);

CSE333, Autumn 2023

Does this compile?

27

YA/ UNIVERSITY of WASHINGTON L28: Intro to Rust

Ownership and moves

+ note: box is a place we create on the heap
+ what owns the value ‘333’?

fn double_value(mut x: Box<i32>) {
*X = * (*X);

}

fn main() {
let mut x = Box::new() ;
double_value(x);
println!("What happens if I take 333 twice?: {}", x);

stack heap

CSE333, Autumn 2023

Does this compile?

28

W UNIVERSITY of WASHINGTON L28: Intro to Rust CSE333, Autumn 2023

Ownership and moves

+ note: box is a place we create on the heap
+ what owns the value ‘333’?

fn double_value(mut x: Box<i32>) {
*X = * (*X);

} Does this compile?

fn main() {
let mut x = Box::new() ;
double_value(x);
println!("What happens if I take 333 twice?: {}", x);

| ownership moved, original x is no longer accessible since it does not contain a value
X
(double_value) |

stack heap 29

W UNIVERSITY of WASHINGTON L28: Intro to Rust CSE333, Autumn 2023

Ownership and moves

+ note: box is a place we create on the heap
+ what owns the value ‘333’?

fn double_value(mut x: Box<i32>) {
‘*X = * (*x);

} Does this compile?

fn main() {
let mut x = Box::new() ;
double_value(x);
println!("What happens if I take 333 twice?: {}", x);

X
(double_value) |

stack heap 30

YA/ UNIVERSITY of WASHINGTON L28: Intro to Rust

Ownership and moves

+ note: box is a place we create on the heap
+ what owns the value ‘333’?

fn double_value(mut x: Box<i32>) {
*X = * (*X);

}

fn main() {
let mut x = Box::new() ;
_— double_value(x);

println!("What happens if I take 333 twice?: {}", x);
b

\.

owner out of scope = value is dropped
(doubj “walue)

stack heap

CSE333, Autumn 2023

Does this compile?

31

YA/ UNIVERSITY of WASHINGTON L28: Intro to Rust

Ownership and moves

+ note: box is a place we create on the heap
+ what owns the value ‘333’?

fn double_value(mut x: Box<i32>) {
*X = * (*X);

}

fn main() {
let mut x = Box::new() ;
double_value(x);

N println!("What happens if I take 333 twice?: {}", x);
b

\.

stack heap

CSE333, Autumn 2023

Does this compile?

32

W UNIVERSITY of WASHINGTON L28: Intro to Rust CSE333, Autumn 2023

Ownership and moves

+ note: box is a place we create on the heap

(\
fn double_value(mut x: Box<i32>) {
*X = * (*X);

} Does this compile?

fn main() {
let mut x = Box::new() ;
double_value(x);
println!("What happens if I take 333 twice?: {}", x);

= Each value in Rust has an owner

* There can only be one owner at a time
* When the owner goes out of scope, the value is dropped

33

W UNIVERSITY of WASHINGTON L28: Intro to Rust CSE333, Autumn 2023

Ownership and moves

+ note: box is a place we create on the heap

fn double_value(mut x: Box<i32>) {
*X = * (*X);

Y Does this compile?

fn main() {
let mut x = Box::new();
double_value(x); No!
println!("What happens if I take 333 twice?: {}", x);

error[E0382]: borrow of moved value: “x°
--> src/main.rs:9:55
|
Box: :new(333);
move occurs because 'x' has type 'Box<i32>", which does not implement the "Copy trait

double_value(x);

- value moved here
println!("What happens if I take 333 twice?: {}", X);

A value borrowed here after move

34

W UNIVERSITY of WASHINGTON L28: Intro to Rust CSE333, Autumn 2023

Ownership and Copy trait

+ To “be Copy” means a type’s value can be duplicated
by copying its bit representation
+ Most primitive types “are Copy”

4 N\
fn double_value(mut x: i32) {
X = 2 % x; Does this compile?
}
fn main() {
let mut x =
double_value(x);
println! ("What happens if I take 333 twice?: {}", x);
'
L J

35

W UNIVERSITY of WASHINGTON L28: Intro to Rust CSE333, Autumn 2023

Ownership and Copy trait

+ To “be Copy” means a type’s value can be duplicated
by copying its bit representation
+ Most primitive types “are Copy”

4 N\
fn double_value(mut x: i32) {
X = 2 % x; Does this compile?
}
fn main() {
let mut x = : Yes!
double_value(x);
println! ("What happens if I take 333 twice?: {}", x);
'
L J

36

W UNIVERSITY of WASHINGTON L28: Intro to Rust CSE333, Autumn 2023

Ownership and Copy trait

+ To “be Copy” means a type’s value can be duplicated
by copying its bit representation
+ Most primitive types “are Copy”

4 N\
fn double_value(mut x: i32) {
X = 2 % x; Does this compile?
}
fn main() {
let mut x = : Yes!
double_value(x);
println! ("What happens if I take 333 twice?: {}", x);
'
L J

37

YA/ UNIVERSITY of WASHINGTON L28: Intro to Rust

Ownership and Copy trait

CSE333, Autumn 2023

+ To “be Copy” means a type’s value can be duplicated

by copying its bit representation
+ Most primitive types “are Copy”

7

fn double_value(mut x: i32) {

X = * X
}
fn main() {

let mut x =

double_value(x);

println!("What happens if I take 333 twice?: {}",
}

Does this compile?

Yes!

$ rustc ownership copy.rs
$./ownership copy

What happens 1f I take 333 twice?:

333

38

CSE333, Autumn 2023

YA/ UNIVERSITY of WASHINGTON L28: Intro to Rust

Ownership and Copy trait

+ To “be Copy” means a type’s value can be duplicated

by copying its bit representation
+ Most primitive types “are Copy”

7

fn double_value(mut x: i32) {
A VERS
}

fn main() {
let mut x =
double_value(x);
println! ("What happens if I take 333 twice?: {}", x);

(double_value)

X

(main)

stack

Does this compile?

Yes!

39

CSE333, Autumn 2023

YA/ UNIVERSITY of WASHINGTON L28: Intro to Rust

Ownership and Copy trait

+ To “be Copy” means a type’s value can be duplicated

by copying its bit representation
+ Most primitive types “are Copy”

p
fn double_value(mut x: i32) {

}

fn main() {
let mut x =
double_value(x);
println! ("What happens if I take 333 twice?: {}", x);

X
(double_value)

(main)

stack

Does this compile?

Yes!

40

W UNIVERSITY of WASHINGTON L28: Intro to Rust CSE333, Autumn 2023

Ownership and Copy trait

+ To “be Copy” means a type’s value can be duplicated
by copying its bit representation
+ Most primitive types “are Copy”

4 N\
fn double_value(mut x: i32) {
X = 2 % x; Does this compile?
}
fn main() {
let mut x = : Yes!
double_value(x);
println! ("What happens if I take 333 twice?: {}", x);
'
L J
X
(main)

stack a1

YA/ UNIVERSITY of WASHINGTON

L28: Intro to Rust

CSE333, Autumn 2023

Borrowing

+ References “borrow” a value, but never take ownership

%+ Can have shared references (&T),
or mutable references (&mut T)

-
fn double_value(x: &mut i32) {
) i = 0 x (*x);
Y
fn main() {
let mut x =
double_value(&mut x);
println! ("What happens if I take 333 twice?: {}", x);
Y
_
X
(double_value)
X
(main)

stack

Does this compile?

42

W UNIVERSITY of WASHINGTON L28: Intro to Rust CSE333, Autumn 2023

Borrowing

+ References “borrow” a value, but never take ownership
%+ Can have shared references (&T),

or mutable references (&mut T)

4 N\
fn double_value(x: &mut i32) {
e *x = 2 % (*x); Does this compile?
}
fn main() {
let mut x =
double_value(&mut x);
println! ("What happens if I take 333 twice?: {}", x);
'
L J

43

W UNIVERSITY of WASHINGTON L28: Intro to Rust CSE333, Autumn 2023

Borrowing

+ References “borrow” a value, but never take ownership
%+ Can have shared references (&T),

or mutable references (&mut T)

()

fn double_value(x: &mut i32) {
*x = 2 % (*x); Does this compile?

}

fn main() {

let mut x =

double_value(&mut x);

println! ("What happens if I take 333 twice?: {}", x);

44

YA/ UNIVERSITY of WASHINGTON

L28: Intro to Rust

Borrowing

CSE333, Autumn 2023

+ References “borrow” a value, but never take ownership

%+ Can have shared references (&T),
or mutable references (&mut T)

7

fn double_value(x:
* (*x);

&mut i32) {
*X:

}

fn main() {
let mut x =
double_value(&mut Xx);

= println!("What happens if I take 333 twice?: {}",
}
L

Does this compile?

Yes!

$ rustc ownership borrow.rs
$./ownership borrow

What happens 1f I take 333 twice?:

6606

45

W UNIVERSITY of WASHINGTON L28: Intro to Rust CSE333, Autumn 2023

Borrowing rules

+ Can have multiple shared references simultaneously
+ A mutable reference is an exclusive borrow

f)
let mut x = Box::new(333);
let r1 = &x; Does this compile?
let r2 = &x;

println!("{}", r1);

46

W UNIVERSITY of WASHINGTON L28: Intro to Rust CSE333, Autumn 2023

Borrowing rules

+ Can have multiple shared references simultaneously
+ A mutable reference is an exclusive borrow

f)
let mut x = Box::new(333);
let r1 = &x; Does this compile?
let r2 = &x;

println!("{}", r1);

Yes!

47

YA/ UNIVERSITY of WASHINGTON

L28: Intro to Rust

Borrowing rules and lifetimes

7
0‘0

)/
*

*

CSE333, Autumn 2023

Can have multiple shared references simultaneously

A mutable reference is an exclusive borrow

let
let
let
let

mut Xx

r1
r2
r3

= Box: :new(
&x;
&x;
&mut Xx;

println!("{}", r1);

);

Does this compile?

48

YA/ UNIVERSITY of WASHINGTON

L28: Intro to Rust

Borrowing rules and lifetimes

CSE333, Autumn 2023

+ Can have multiple shared references simultaneously

+ A mutable reference is an exclusive borrow
let mut x = Box::new(333); _ -
let r1 = &x: Does this compile?
let r2 = &x;
let r3 = &mut x;

println! ("{}",

r1); No!

error[E0502]: cannot borrow "x as mutable because it is also borrowed as immutablé
--> src/main.rs:6:10

|

| let rl &x;

| -- immutable borrow occurs here

| let r2

| let r3

| mutable borrow occurs here

| println! ("{}"

, rl);

| -— immutable borrow later used here

W UNIVERSITY of WASHINGTON L28: Intro to Rust CSE333, Autumn 2023

Borrowing rules and lifetimes

+ Can have multiple shared references simultaneously
+ A mutable reference is an exclusive borrow

f)
let mut x = Box::new(333);
let r1 = &x; Does this compile?
let r2 = &x;

println!("{}", r1);
let r3 = &mut x;

50

YA/ UNIVERSITY of WASHINGTON

L28: Intro to Rust

CSE333, Autumn 2023

Pre 2018 borrow checking (lexical lifetimes)

+ borrow checking used to be lexically scoped
+ confusing to new Rustaceans (this code seems correct)

But y *isn't*
using it anymore!

/

fn main() {
let mut
let y =
let z =
3

x = 5;
&x;
&mut x;

v
&
S
v

B
& s
&
&8
:[’
i\\‘b

Wait, you can't compile that!

Z needs to be the only one
borrowing x's value, but vy
is already using it.

s

Hello

my name is

borrow
checker

51

YA/ UNIVERSITY of WASHINGTON L28: Intro to Rust

Borrow checking (non-lexical lifetimes)

+ lifetimes end after use (not end of block)
+ code that you reason should compile, will (*)

Ah, | seel y isn't going to
use the value again after

line 2, so we can just end
its borrow after that.

All good! Go ahead and

fn main() { & i compile!
let mut x = 5; &
let v &x; I &
. 7 Hello
}

borrow
checker

I

(*) This isn’t always true. The borrow checker remains conservative when safety is on the line.

CSE333, Autumn 2023

52

YA/ UNIVERSITY of WASHINGTON

L28: Intro to Rust CSE333, Autumn 2023

Borrowing rules and lifetimes

+ Can have multiple shared references simultaneously
+ A mutable reference is an exclusive borrow

let mut x = Box: :new(
let r1 = &x;

let r2 = &x;
println!("{}", r1);
let r3 = &mut x;

);

Does this compile?

Yes!

53

YA/ UNIVERSITY of WASHINGTON

L28: Intro to Rust

Borrowing rules and lifetimes

CSE333, Autumn 2023

+ Can have multiple shared references simultaneously

< A mutable reference is an exclusive borrow

let mut x = Box::new();
let r1 = &x;
if rand() < {
*x = :
} else {

println!("{}", r1);

Does this compile?

54

YA/ UNIVERSITY of WASHINGTON

L28: Intro to Rust

Borrowing rules and lifetimes

CSE333, Autumn 2023

+ Can have multiple shared references simultaneously

< A mutable reference is an exclusive borrow

let mut x = Box::new();
let r1 = &x;
if rand() < {
*x = :
} else {

println!("{}", r1);

Does this compile?

55

YA/ UNIVERSITY of WASHINGTON

L28: Intro to Rust

Borrowing rules and lifetimes

CSE333, Autumn 2023

+ Can have multiple shared references simultaneously

< A mutable reference is an exclusive borrow

let mut x = Box::new();
let r1 = &x;
if rand() < {
*x = :
} else {

Does this compile?

56

YA/ UNIVERSITY of WASHINGTON

L28: Intro to Rust

CSE333, Autumn 2023

Borrowing rules and lifetimes

+ Can have multiple shared references simultaneously
+ A mutable reference is an exclusive borrow

Does this compile?

Yes!

let mut x = Box::new();
let r1 = &x;
if rand() < {
*x = :
} else {
println! ("{}", r1);
}
S J
let r1 = &x;

‘a println!("{}",

r1);

57

CSE333, Autumn 2023

YA/ UNIVERSITY of WASHINGTON L28: Intro to Rust

Memory safety by examples

fn main() {

let x = String::from("CSE 333");

let y = x;

println!("Hello, {}", x);

58

YA/ UNIVERSITY of WASHINGTON

L28: Intro to Rust

Memory safety by examples (cont’d)

Is this code OK? —

Is this code OK? —

7

~—

fn main()

let x = String::from("CSE 333");

let y = &x;

println!("Hello,

{", x);

println! ("Goodbye, {}", y);
)
fn main() A
let y = {
let x = String::from("hi");
&X
}i

println!("{}", y);

CSE333, Autumn 2023

59

W UNIVERSITY of WASHINGTON L28: Intro to Rust CSE333, Autumn 2023

Rust memory safety

Either one mutable reference OR many immutable references

No null

Out-of-bounds access (checked at runtime) results in program panic
Ownership rules apply across multiple threads

(no data races across threads, checked at compile time)

e Is memory leaking safe?

60

W UNIVERSITY of WASHINGTON L28: Intro to Rust CSE333, Autumn 2023

Rust memory safety

Either one mutable reference OR many immutable references

No null

Out-of-bounds access (checked at runtime) results in program panic
Ownership rules apply across multiple threads

(no data races across threads, checked at compile time)

e Is memory leaking safe?

smart pointers
e Box<T> for allocating values on the heap

e Rc<T>, a reference counting type that enables multiple ownership
e Ref<T>and RefMut<T>, accessed through refce11<T>, a type that enforces the

borrowing rules at runtime instead of compile time

61

CSE333, Autumn 2023

YA/ UNIVERSITY of WASHINGTON L28: Intro to Rust

Rust Resources

Rust Programming Language website:
https://www.rust-lang.org/

“The Book” (official book):
https://doc.rust-lang.org/book/

Rust for Rustaceans (intermediate book):

https://rust-for-rustaceans.com/

Crates.io (official package repository):
https://crates.io/

62

https://www.rust-lang.org/
https://doc.rust-lang.org/book/
https://rust-for-rustaceans.com/
https://crates.io/

W UNIVERSITY of WASHINGTON L28: Intro to Rust CSE333, Autumn 2023

Rust code can compile to WebAssembly

» code would run in client’s browser (i.e. serverless)

@‘4' JS

&

63

W UNIVERSITY of WASHINGTON L28: Intro to Rust CSE333, Autumn 2023

Lecture Outline

+ A (very brief) tour of Rust
= Not comprehensive, but will highlight interesting features
= Basic examples directly from “The Book” and “Rust by Example”

= Resources to learn Rust listed on last slide

+ Demo project: designing orthogonal strands of DNA

64

