
CSE333, Fall 2023L26: Concurrency and Processes

1

pollev.com/cse333

What has been your favorite topic group
so far?

A. Memory Management: pointers, references,
malloc/free, new/delete, memory bugs, smart
pointers

B. Data Structures: arrays, structs, containers
C. Object-Oriented Programming: classes, inheritance
D. Modularization: compilation, interfaces, templates
E. I/O: files, buffering, network programming
F. Concurrency
G. I prefer not to say

CSE333, Fall 2023L26: Concurrency and Processes

Concurrency: Processes
CSE 333 Fall 2023

Instructor: Chris Thachuk

Teaching Assistants:

Ann Baturytski Humza Lala
Alan Li

Noa Ferman Leanna Mi Nguyen
James Froelich Chanh Truong
Hannah Jiang Deeksha Vatwani
Yegor Kuznetsov Jennifer Xu

CSE333, Fall 2023L26: Concurrency and Processes

Relevant Course Information
v Exercise 12 due Monday (12/4) by 10pm

v Homework 4 due Wednesday (12/6) by 10pm
§ Submissions accepted until Friday (12/8) by 10pm

v Final exam topics and samples posted on Friday
§ Will cover topics from midterm onward covered in course
§ Similar format, but longer duration than midterm (Dec. 13,

2:30pm-4:20pm)

v Friday’s lecture will be fun!
§ Writing fast(er) code, dog pictures, attempts at humor

3

CSE333, Fall 2023L26: Concurrency and Processes

Outline

v We’ll look at different searchserver implementations
§ Sequential
§ Concurrent via forking threads – pthread_create()
§ Concurrent via forking processes – fork()
§

•

v Reference: Computer Systems: A Programmer’s
Perspective, Chapter 12 (CSE 351 book)

4

CSE333, Fall 2023L26: Concurrency and Processes

Why Concurrent Processes?

v Advantages:
§ Processes are isolated from one another

• No shared memory between processes
• If one crashes, the other processes keep going

§ No need for language support (OS provides fork)

v Disadvantages:
§ Processes are heavyweight

• Relatively slow to fork
• Context switching latency is high

§ Communication between processes is complicated

5

CSE333, Fall 2023L26: Concurrency and Processes

Process Isolation

v Process Isolation is a set of mechanisms implemented to
protect processes from each other and protect the kernel
from user processes.
§ Processes have separate address spaces
§ Processes have privilege levels to restrict access to resources
§ If one process crashes, others will keep running

v Inter-Process Communication (IPC) is limited, but possible
§ Pipes via pipe()
§ Sockets via socketpair()
§ Shared Memory via shm_open()

6

CSE333, Fall 2023L26: Concurrency and Processes

Creating New Processes (Review)

v

§ Creates a child process that is an exact clone (except threads) of
the current/parent process

§ Child process has a separate virtual address space from the parent

v fork() has peculiar semantics
§ The parent invokes fork()

7

pid_t fork();

parent

OS

fork()

CSE333, Fall 2023L26: Concurrency and Processes

Creating New Processes (Review)

v

§ Creates a child process that is an exact clone (except threads) of
the current/parent process

§ Child process has a separate virtual address space from the parent

v fork() has peculiar semantics
§ The parent invokes fork()
§ The OS clones the parent

8

pid_t fork();

parent child

OS

clone

CSE333, Fall 2023L26: Concurrency and Processes

Creating New Processes (Review)

v

§ Creates a child process that is an exact clone (except threads) of
the current/parent process

§ Child process has a separate virtual address space from the parent

v fork() has peculiar semantics
§ The parent invokes fork()
§ The OS clones the parent
§ Both the parent and the child

return from fork
• Parent receives child’s pid
• Child receives a 0

9

pid_t fork();

parent child

OS

child pid 0

CSE333, Fall 2023L26: Concurrency and Processes

fork() and Address Spaces

v Fork causes the OS
to clone the
address space
§ The copies of the

memory segments are
(nearly) identical

§ The new process has
copies of the parent’s
data, stack-allocated
variables, open file
descriptors, etc.

10

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

fork()PARENT CHILD

CSE333, Fall 2023L26: Concurrency and Processes

Zombies (Review)

v When a process terminates, its resources (e.g., its address
space) hang around as the process sits in a zombie state
§ Process terminates by return from main or calling exit()

v A zombie process needs to be reaped
§ Done automatically when its parent process terminates
§ Can be done explicitly by its parent process by calling wait() or
waitpid(), which also returns the status code

§ If the parent process terminates before the child becomes a
zombie, then init/systemd is responsible for reaping it

v See fork_example.cc
§ ps -u displays the user’s currently running processes

11

CSE333, Fall 2023L26: Concurrency and Processes

Main Uses of fork

v Fork a child to handle some work
§ e.g., server forks to handle a new connection
§ e.g., web browser forks to render a new website

(for security purposes)

v Fork a child that then starts a new program via execv
§ e.g., a shell forks and starts the program you want to run
§ e.g., the 333 grading scripts fork and exec your

executable

v Fork a background (“daemon”) process that runs
independently

12

CSE333, Fall 2023L26: Concurrency and Processes

How Fast is fork()?

v See fork_latency.cc

v ~0.26 milliseconds per fork*
§ ∴ maximum of (1000/0.5) = 3,800 connections/sec/core

= ~332 million connections/day/core
• This is fine for most servers
• Too slow for super-high-traffic front-line web services

– Facebook served ~750 billion page views per day in 2013!
Would need 2-3k cores just to handle fork(), i.e. without doing any work
for each connection

v *Past measurements are not indicative of future performance – depends on hardware, OS,
software versions, …

v Tested on attu4 (3/5/2022)

13

CSE333, Fall 2023L26: Concurrency and Processes

How Fast is pthread_create()?

v See thread_latency.cc

v ~0.02 milliseconds per thread creation*
§ ~13x faster than fork()
§ ∴ maximum of (1000/0.02) = 50,000 connections/sec/core

= ~4.3 billion connections/day/core

§ Mush faster, but writing safe multithreaded code can be serious
voodoo, as we’ve seen

v *Past measurements are not indicative of future performance – depends on hardware, OS,
software versions, …, but will typically be an order of magnitude faster than fork()

v Tested on attu4 (3/5/2022)

14

CSE333, Fall 2023L26: Concurrency and Processes

Concurrent Server with Processes

v The parent process blocks on accept(), waiting for a
new client to connect
§ When a new connection arrives, the parent calls fork() to

create a child process
§ The child process handles that new connection and exit()’s

when the connection terminates

v How do we avoid zombie processes from consuming all of
our memory?
§ Option A: Parent calls wait() to “reap” children
§ Option B: Use a double-fork trick

15

CSE333, Fall 2023L26: Concurrency and Processes

Double-fork Trick

16

server

CSE333, Fall 2023L26: Concurrency and Processes

Double-fork Trick

17

client

server

connect

accept()

CSE333, Fall 2023L26: Concurrency and Processes

Double-fork Trick

18

client

server

server
fork() child

CSE333, Fall 2023L26: Concurrency and Processes

Double-fork Trick

19

client server

server

server
fork() grandchild

CSE333, Fall 2023L26: Concurrency and Processes

Double-fork Trick

20

client server

server

child exit()’s / parent wait()’s

// Grandchild

child

When parent wait()’s
for child, the child will

be cleaned up

CSE333, Fall 2023L26: Concurrency and Processes

Double-fork Trick

21

client server

server parent closes its
client connection

CSE333, Fall 2023L26: Concurrency and Processes

Double-fork Trick

22

client server

server

CSE333, Fall 2023L26: Concurrency and Processes

Double-fork Trick

23

client server

server

server

server

client

fork() grandchild
exit()

fork() child

CSE333, Fall 2023L26: Concurrency and Processes

Double-fork Trick

24

client server

client server

server

CSE333, Fall 2023L26: Concurrency and Processes

Double-fork Trick

25

client server

client server

client server

client server

client server

client server
client server

client server

client server

server

CSE333, Fall 2023L26: Concurrency and Processes

26

pollev.com/cse333

What will happen when one of the
grandchildren processes finishes?

A. Zombie until grandparent exits

B. Zombie until grandparent reaps

C. Zombie until init reaps

D. ZOMBIE FOREVER!!!

E. We’re lost…

CSE333, Fall 2023L26: Concurrency and Processes

Concurrent with Processes Pseudocode
v See searchserver_processes/

27

... // Server set up
while (1) {
 sock_fd = accept();
 pid = fork();
 if (pid == 0) {
 // ??? process

 } else {
 // ??? process

 }
}

CSE333, Fall 2023L26: Concurrency and Processes

Concurrent with Processes Pseudocode
v See searchserver_processes/

28

... // Server set up
while (1) {
 sock_fd = accept();
 pid = fork();
 if (pid == 0) {
 // Child process

 } else {
 // Parent process

 }
}

CSE333, Fall 2023L26: Concurrency and Processes

Concurrent with Processes Pseudocode
v See searchserver_processes/

29

... // Server set up
while (1) {
 sock_fd = accept();
 pid = fork();
 if (pid == 0) {
 // Child process
 pid = fork();
 if (pid == 0) {
 // ??? process

 }

 } else {
 // Parent process

 }
}

CSE333, Fall 2023L26: Concurrency and Processes

Concurrent with Processes Pseudocode
v See searchserver_processes/

30

... // Server set up
while (1) {
 sock_fd = accept();
 pid = fork();
 if (pid == 0) {
 // Child process
 pid = fork();
 if (pid == 0) {
 // Grand-child process
 HandleClient(sock_fd, ...);
 }

 } else {
 // Parent process

 }
}

CSE333, Fall 2023L26: Concurrency and Processes

Concurrent with Processes Pseudocode
v See searchserver_processes/

31

... // Server set up
while (1) {
 sock_fd = accept();
 pid = fork();
 if (pid == 0) {
 // Child process
 pid = fork();
 if (pid == 0) {
 // Grand-child process
 HandleClient(sock_fd, ...);
 }
 // Clean up resources...
 exit();
 } else {
 // Parent process

 }
}

CSE333, Fall 2023L26: Concurrency and Processes

Concurrent with Processes Pseudocode
v See searchserver_processes/

32

... // Server set up
while (1) {
 sock_fd = accept();
 pid = fork();
 if (pid == 0) {
 // Child process
 pid = fork();
 if (pid == 0) {
 // Grand-child process
 HandleClient(sock_fd, ...);
 }
 // Clean up resources...
 exit();
 } else {
 // Parent process
 // Wait for child to immediately die
 wait();
 close(sock_fd);
 }
}

CSE333, Fall 2023L26: Concurrency and Processes

Outline (Revisited)

v We’ll look at different searchserver implementations
§ Sequential
§ Concurrent via forking threads – pthread_create()
§ Concurrent via forking processes – fork()
§

v Conclusions:
§ Concurrent execution leads to better CPU, network utilization
§ Writing concurrent software can be tricky and different

concurrency methods have benefits and drawbacks

v In real servers, we’d like to avoid the overhead needed to
create a new thread or process for every request… how?

33

CSE333, Fall 2023L26: Concurrency and Processes

Aside: Thread Pools

v Idea:
§ Create a fixed set of worker threads when the server starts
§ When a request arrives, add it to a queue of tasks (using locks)
§ Each thread tries to remove a task from the queue (using locks)
§ When a thread is finished with one task, it tries to get a new task

from the queue (using locks)

v A thread pool is written for you in Homework 4!
§ Feel free to take a look, if curious

34

