
CSE333, Fall 2023L24: Intro to Concurrency

1

pollev.com/cse333

About how long did Exercise 10 take you?

A. [0, 2) hours
B. [2, 4) hours
C. [4, 6) hours
D. [6, 8) hours
E. 8+ Hours
F. I didn’t submit / I prefer not to say

CSE333, Fall 2023L24: Intro to Concurrency

Introduction to Concurrency
CSE 333 Fall 2023

Instructor: Chris Thachuk

Teaching Assistants:

Ann Baturytski Humza Lala
 Alan Li
Noa Ferman Leanna Mi Nguyen
James Froelich Chanh Truong
Hannah Jiang Deeksha Vatwani
Yegor Kuznetsov Jennifer Xu

CSE333, Fall 2023L24: Intro to Concurrency

Relevant Course Information

v Homework 3 due tomorrow (11/23) by 10pm
§ Help during holidays is unlikely so seek help by today

v Homework 4 out, due 12/6
§ Open private Ed post if missing hw4 starter files

v Exercise 11 due Monday by 10pm
§ Can use ex10 posted solutions

v No Thursday section or Friday lecture this week
§ Make time to rest and pursue something fun over the holiday!

3

CSE333, Fall 2023L24: Intro to Concurrency

Homework 4 Summary

v Build a Multithreaded Web Server (333gle)
§ You will host the querying service that you built in your previous

homework on a web server

v Running your server
§ ./http333d <port> <static files> <unit indices>

§ Static files are the files on disk corresponding to our index files
§ You (and others) can access it on any browser now!

v Implementation
§ Using network protocols to communicate between client/server
§ Handling some additional security flaws
§ Note: Multithreading is already implemented for you

4

CSE333, Fall 2023L24: Intro to Concurrency

Some Common HW4 Bugs

v Your server works, but is really, really slow
§ Check the 2nd argument to the QueryProcessor constructor

v Funny things happen after the first request
§ Make sure you’re not destroying the HTTPConnection object

too early (e.g., falling out of scope in a while loop)

v Server crashes on a blank request
§ Make sure that you handle the case that read() (or
WrappedRead()) returns 0

5

CSE333, Fall 2023L24: Intro to Concurrency

Lecture Outline

v From Query Processing to a Search Server
v Concurrency and Concurrency Methods

6

CSE333, Fall 2023L24: Intro to Concurrency

Building a Web Search Engine

v We have:
§ Some indexes

• A map from <word> to <list of documents containing the word>
• This is probably sharded over multiple files

§ A query processor
• Accepts a query composed of multiple words
• Looks up each word in the index
• Merges the result from each word into an overall result set

7

CSE333, Fall 2023L24: Intro to Concurrency

Search Engine Architecture

8

query
processor client

index
file

index
file

index
file

CSE333, Fall 2023L24: Intro to Concurrency

Sequential Search Engine (Pseudocode)

9

doclist Lookup(string word) {
 bucket = hash(word);
 hitlist = file.read(bucket);
 foreach hit in hitlist {
 doclist.append(file.read(hit));
 }
 return doclist;
}

main() {
 SetupServerToReceiveConnections();
 while (1) {
 string query_words[] = GetNextQuery();
 results = Lookup(query_words[0]);
 foreach word in query[1..n] {
 results = results.intersect(Lookup(word));
 }
 Display(results);
 }
}

See searchserver_sequential/

CSE333, Fall 2023L24: Intro to Concurrency

Why Sequential?

v Advantages:
§ Super(?) simple to build/write

v Disadvantages:
§ Incredibly poor performance

• One slow client will cause all others to block
• Poor utilization of resources (CPU, network, disk)

10

CSE333, Fall 2023L24: Intro to Concurrency

Execution Timeline: a Multi-Word Query

11

n
e
t
w
o
r
k

I
/
O

m
a
i
n
(
)

G
e
t
N
e
x
t
Q
u
e
r
y
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p(
)

n
e
t
w
o
r
k

I
/
O

D
i
s
p
l
a
y
(
)

G
e
t
N
e
x
t
Q
u
e
r
y
(
)

• • •

time

query

C
P
U

C
P
U

r
e
s
u
l
t
s
.
i
n
t
e
r
s
e
c
t
(
)

r
e
s
u
l
t
s
.
i
n
t
e
r
s
e
c
t
(
)

CSE333, Fall 2023L24: Intro to Concurrency

What About I/O-caused Latency?

v Jeff Dean’s “Numbers Everyone Should Know” (LADIS ‘09)

12

CSE333, Fall 2023L24: Intro to Concurrency

Execution Timeline: (Loosely) To Scale

13

n
e
t
w
o
r
k

I
/
O

m
a
i
n
(
)

d
i
s
k

I
/
O

d
i
s
k

I
/
O

d
i
s
k

I
/
O

• • •

time

query

n
e
t
w
o
r
k

I
/
O

C
P
U

C
P
U

CSE333, Fall 2023L24: Intro to Concurrency

Multiple (Single-Word) Queries

14

C
P
U

1
.
a

I
/
O

1
.
b

C
P
U

1
.
c

I
/
O

1
.
d

C
P
U

1
.
e C
P
U

2
.
a

I
/
O

2
.
b

C
P
U

2
.
c

I
/
O

2
.
d

C
P
U

2
.
e C
P
U

3
.
a

I
/
O

3
.
b

C
P
U

3
.
c

I
/
O

3
.
d

C
P
U

3
.
e

time

query 2

query 3

query 1

is the Query Number
#.a -> GetNextQuery()
#.b -> network I/O
#.c -> Lookup() & file.read()
#.d -> Disk I/O
#.e -> Intersect()
 & Display()

CSE333, Fall 2023L24: Intro to Concurrency

Multiple Queries: (Loosely) To Scale

15

I
/
O

1
.
b

I
/
O

1
.
d

time

query 2

query 1

I
/
O

1
.
b

I
/
O

1
.
d

I
/
O

1
.
b

I
/
O

1
.
d

query 3

CSE333, Fall 2023L24: Intro to Concurrency

Sequential Issues

16

C
P
U

1
.
a

I
/
O

1
.
b

C
P
U

1
.
c

I
/
O

1
.
d

C
P
U

1
.
e C
P
U

2
.
a

I
/
O

2
.
b

C
P
U

2
.
c

I
/
O

2
.
d

C
P
U

2
.
e C
P
U

3
.
a

I
/
O

3
.
b

C
P
U

3
.
c

I
/
O

3
.
d

C
P
U

3
.
e

time

query 2

query 3

query 1

The CPU is idle most
of the time!

(picture not to scale)

Only one I/O request at
a time is “in flight”

Queries don’t run until
earlier queries finish

CSE333, Fall 2023L24: Intro to Concurrency

Sequential Can Be Inefficient

v Only one query is being processed at a time
§ All other queries queue up behind the first one
§ And clients queue up behind the queries …

v Even while processing one query, the CPU is idle the vast
majority of the time
§ It is blocked waiting for I/O to complete

• Disk I/O can be very, very slow (10 million times slower …)

v At most one I/O operation is in flight at a time
§ Missed opportunities to speed I/O up

• Separate devices in parallel, better scheduling of a single device, etc.

17

CSE333, Fall 2023L24: Intro to Concurrency

Lecture Outline

v From Query Processing to a Search Server
v Concurrency and Concurrency Methods

18

CSE333, Fall 2023L24: Intro to Concurrency

Concurrency

v Concurrency != parallelism
§ Concurrency is working on multiple tasks with overlapping

execution times
§ Parallelism is executing multiple CPU instructions simultaneously

v Our search engine could run concurrently in multiple
different ways:
§ Example: Issue I/O requests against different files/disks

simultaneously
• Could read from several index files at once, processing the I/O results

as they arrive
§ Example: Execute multiple queries at the same time

• While one is waiting for I/O, another can be executing on the CPU

19

CSE333, Fall 2023L24: Intro to Concurrency

A Concurrent Implementation

v Use multiple “workers”
§ As a query arrives, create a new worker to handle it

• The worker reads the query from the network, issues read requests
against files, assembles results and writes to the network

• The worker alternates between consuming CPU cycles and blocking
on I/O

§ The OS context switches between workers
• While one is blocked on I/O, another can use the CPU
• Multiple workers’ I/O requests can be issued at once

v So what should we use for our “workers”?

20

CSE333, Fall 2023L24: Intro to Concurrency

Worker Option 1: Processes (Review)

v Processes can fork “cloned” processes that have a
parent-child relationship
§ Work almost entirely independent of each other

v The major components of a process are:
§ An address space to hold data and instructions
§ Open resources such as file descriptors
§ Current state of execution

• Includes values of registers (including program counter and stack
pointer) and parts of memory (the Stack, in particular)

21

CSE333, Fall 2023L24: Intro to Concurrency

Why Processes?

v Advantages:
§ Processes are isolated from one another

• No shared memory between processes
• If one crashes, the other processes keep going

§ No need for language support (OS provides fork)

v Disadvantages:
§ A lot of overhead during creation and context switching
§ Cannot easily share memory between processes – typically must

communicate through the file system

22

CSE333, Fall 2023L24: Intro to Concurrency

Worker Option 2: Threads

v From within a process, we can separate out the concept
of a “thread of execution” (thread for short)
§ Processes are the containers that hold shared resources and

attributes
• e.g., address space, file descriptors, security attributes

§ Threads are independent, sequential execution streams (units of
scheduling) within a process
• e.g., stack, stack pointer, program counter, registers

23

thread

CSE333, Fall 2023L24: Intro to Concurrency

Threads vs. Processes

24

OS kernel [protected]

Stackchild

Heap (malloc/free)
Read/Write Segments

.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)
Read/Write Segments

.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)
Read/Write Segments

.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork()

SPparent

PCparent

SPchild

PCchild

CSE333, Fall 2023L24: Intro to Concurrency

Threads vs. Processes

25

OS kernel [protected]

Stackparent

Heap (malloc/free)
Read/Write Segments

.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)
Read/Write Segments

.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

pthread_create()

Stackchild

SPparent

PCparent

SPchild

PCchild

SPparent

PCparent

CSE333, Fall 2023L24: Intro to Concurrency

Multi-threaded Search Engine (Pseudocode)

26

doclist Lookup(string word) {
 bucket = hash(word);
 hitlist = file.read(bucket);
 foreach hit in hitlist
 doclist.append(file.read(hit));
 return doclist;
}

ProcessQuery(string query_words[]) {
 results = Lookup(query_words[0]);
 foreach word in query[1..n]
 results = results.intersect(Lookup(word));
 Display(results);
}

main() {
 while (1) {
 string query_words[] = GetNextQuery();
 CreateThread(ProcessQuery(query_words));
 }
}

All we did was put the
code into a function,
and create a thread
that invokes it!

CSE333, Fall 2023L24: Intro to Concurrency

Multi-threaded Search Engine (Execution)

27

C
P
U

1
.
a

I
/
O

1
.
b

C
P
U

1
.
c

I
/
O

1
.
d

C
P
U

1
.
e

C
P
U

2
.
a

I
/
O

2
.
b

C
P
U

3
.
a

I
/
O

3
.
b

C
P
U

3
.
c

I
/
O

3
.
d

C
P
U

3
.
e

time

query 2

query 3

query 1

C
P
U

2
.
c

I
/
O

2
.
d

C
P
U

2
.
e

Note how only one
thread uses any
specific resource at a
time.
The OS schedules all
of this for us! J

CSE333, Fall 2023L24: Intro to Concurrency

Why Threads?

v Advantages:
§ You (mostly) write sequential-looking code
§ Less overhead than processes during creation and context

switching
§ Threads can run in parallel if you have multiple CPUs/cores

v Disadvantages:
§ If threads share data, you need locks or other synchronization

• Very bug-prone and difficult to debug
§ Threads can introduce overhead

• Lock contention, context switch overhead, and other issues
§ Need language support for threads

28

CSE333, Fall 2023L24: Intro to Concurrency

Alternate: Non-blocking I/O

v Reading from the network can truly block your program
§ Remote computer may wait arbitrarily long before sending data

v Non-blocking I/O (network, console)
§ Your program enables non-blocking I/O on its file descriptors
§ Your program issues read() and write() system calls

• If the read/write would block, the system call returns immediately
§ Program can ask the OS which file descriptors are

readable/writeable
• Program can choose to block while no file descriptors are ready

29

CSE333, Fall 2023L24: Intro to Concurrency

Alternate: Asynchronous I/O

v Using asynchronous I/O, your program (almost never)
blocks on I/O

v Your program begins processing a query
§ When your program needs to read data to make further progress,

it registers interest in the data with the OS and then switches to a
different query

§ The OS handles the details of issuing the read on the disk, or
waiting for data from the console (or other devices, like the
network)

§ When data becomes available, the OS lets your program know by
delivering an event

30

CSE333, Fall 2023L24: Intro to Concurrency

Event-Driven Programming

v Your program is structured as an event-loop

31

void dispatch(task, event) {
 switch (task.state) {
 case READING_FROM_CONSOLE:
 query_words = event.data;
 async_read(index, query_words[0]);
 task.state = READING_FROM_INDEX;
 return;
 case READING_FROM_INDEX:
 ...
 }
}

while (1) {
 event = OS.GetNextEvent();
 task = lookup(event);
 dispatch(task, event);
}

CSE333, Fall 2023L24: Intro to Concurrency

Asynchronous, Event-Driven

32

I
/
O

1
.
b

I
/
O

2
.
b

I
/
O

3
.
b

time

I
/
O

2
.
d

C
P
U

3
.
a

C
P
U

1
.
a

C
P
U

2
.
a

I
/
O

1
.
d

C
P
U

1
.
c

C
P
U

2
.
c

I
/
O

3
.
d

C
P
U

1
.
e

C
P
U

2
.
e

C
P
U

3
.
c

C
P
U

3
.
e

is the Query Number
#.a -> GetNextQuery()
#.b -> network I/O
#.c -> Lookup() & file.read()
#.d -> Disk I/O
#.e -> Intersect()
 & Display()

CSE333, Fall 2023L24: Intro to Concurrency

Why Events?

v Advantages:
§ Don’t have to worry about locks and race conditions
§ For some kinds of programs, especially GUIs, leads to a very

simple and intuitive program structure
• One event handler for each UI event

v Disadvantages:
§ Can lead to very complex structure for programs that do lots of

disk and network I/O
• Sequential code gets broken up into a jumble of small event handlers
• You have to package up all task state between handlers

33

CSE333, Fall 2023L24: Intro to Concurrency

Outline (next two lectures)

v We’ll look at different searchserver implementations
§ Concurrent via dispatching threads – pthread_create()
§ Concurrent via forking processes – fork()

v Reference: Computer Systems: A Programmer’s
Perspective, Chapter 12 (CSE 351 book)

34

