YA UNIVERSITY of WASHINGTON L22: Client-side & Server-side Network Programming CSE333, Fall 2023

Client-side and Server-side

Network Programming
CSE 333 Fall 2023

Instructor: Chris Thachuk

Teaching Assistants:

Ann Baturytski Humza Lala

Alan Li
Noa Ferman Leanna Mi Nguyen
James Froelich Chanh Truong
Hannah Jiang Deeksha Vatwani

Yegor Kuznetsov Jennifer Xu



YA/ UNIVERSITY of WASHINGTON L22: Client-side & Server-side Network Programming

Relevant Course Information

+» Homework 3 due next Thursday
= Late deadline (next Sunday at 10pm)
" Limited help available during holidays

+ Homework 4 released early next week

+ Exercise 10 due Monday

= Client-side programming

CSE333, Fall 2023



W UNIVERSITY of WASHINGTON L22: Client-side & Server-side Network Programming CSE333, Fall 2023

Socket API: Client TCP Connection

+ There are five steps:
1) Figure out the IP address and port to connect to

2) Create a socket
3) Connect the socket to the remote server
4) read () andwrite () data using the socket

5) Close the socket



YA/ UNIVERSITY of WASHINGTON L22: Client-side & Server-side Network Programming

Step 2: Creating a Socket

CSE333, Fall 2023

K [int socket (int domain, int type, int protocol);

" Creating a socket doesn’t bind it to a local address or port yet

= Returns file descriptor or -1 on error

socket.cc

[ #include <arpa/inet.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <iostream>

int main(int argc, char** argv) {
if (socket fd == -1) { /M chek f erro-

return EXIT FAILURE;

}
close (socket £d);  // close when done
return EXIT SUCCESS;

int socket fd = socket(AF INET, SOCK STREAM, O0);

std::cerr << strerror (errno) << std::endl;

~




YA/ UNIVERSITY of WASHINGTON L22: Client-side & Server-side Network Programming CSE333, Fall 2023

Step 3: Connect to the Server

+ The connect () system call establishes a connection to

wswally: stk sockaddr_storage  ss;

a remote host reegret - cast<sikatdde ¥y (b 5s)

B | int connect(int sockfd, const struct sockaddr* addr,
socklen_t’%ddrlen)\4h

j\
- sockfd: Socket file description from Step 2 socket ()

- addr and addrlen: Usually from one of the address structures

: . Qe‘(‘ad(irir\‘&)( )
returned by getaddrinfo in Step 1 (DNS lookup) N

« Returns 0 on success and =1 on error

+» connect () may take some time to return
= |tis a blocking call by default (walson an evert bebre reﬁfn'mg)

" The network stack within the OS will communicate with the
remote host to establish a TCP connection to it

 This involves ~2 round trips across the network



W UNIVERSITY of WASHINGTON L22: Client-side & Server-side Network Programming CSE333, Fall 2023

Connect Example

< See connect.cc

[ // Get an appropriate sockaddr structure.
struct sockaddr storage addr;
size t addrlen;

LookupName (argv([1l], port, /7 does the 5éhdﬂﬂdﬁi)mﬂ

// Create the socket.
int (Socket fd)= socket (addr.ss \family, SOCK STREAM,
(socket fd == -1) {
cerr << "socket () failed: " <<
return EXIT FAILURE;

0):

trerror (errno) << endl;

// Connect the socket to the remote host.

int res = connect (svcket fd,
reinterpret cast<sockaddr*>(&addr),
addrlen—_
1f (res == -1) {
cerr << "connect () failed: " << strerror (errno) << endl;




CSE333, Fall 2023

YA/ UNIVERSITY of WASHINGTON L22: Client-side & Server-side Network Programming

Step 4: read ()

+ If there is data that has already been received by the
network stack, then read will return immediately with it
= read () might return with /ess data than you asked for

+ If there is no data waiting for you, by default read ()

will block until something arrives
= How might this cause deadlock? serec £ cliext have no data b vesd, bt bth all @)

= Can read () return 0? Yes, if womection is closed
4oc Netuork I/D.‘

=

re‘\'u\r r\/‘ \I&\\ we

N o ]
' ZINTR ) l_’_ l-c:\‘\’ ]@

L_—_—J e"ﬂ \\\/ aer,em .. 8




YA/ UNIVERSITY of WASHINGTON L22: Client-side & Server-side Network Programming CSE333, Fall 2023

Step 4: write ()

» write () queues your data in a send buffer in the OS
and then returns
" The OS transmits the data over the network in the background

" Whenwrite () returns, the receiver probably has not yet
received the data!

+ If there is no more space left in the send buffer, by default
write () will block



YA/ UNIVERSITY of WASHINGTON L22: Client-side & Server-side Network Programming CSE333, Fall 2023

Read/Write Example

+ See sendreceive.cc

(while (1) f{
int wres = write(socket fd, readbuf, res);
1f (wres == 0) {
cerr << "socket closed prematurely" << endl;
close (socket fd);
return EXIT FAILURE;
}
if (wres == -1) {
if (errno == EINTR)
continue;
cerr << "socket write faillure: " << strerror(errno) << endl;
close (socket fd);
return EXIT FAILURE;
}

break;

10



W UNIVERSITY of WASHINGTON L22: Client-side & Server-side Network Programming CSE333, Fall 2023

Step 5: close ()

*[int close (int fd);]

= Nothing special here —it’s the same function as with file I/O

= Shuts down the socket and frees resources and file descriptors
associated with it on both ends of the connection

11



YA/ UNIVERSITY of WASHINGTON

L22: Client-side & Server-side Network Programming

CSE333, Fall 2023

Socket API: Server TCP Connection

+ Pretty similar to clients, but with additional steps: fg\g@y:

1)
2)
3)
4)
5)
6)
7)

Figure out the IP address and port on which to listen®find a loction/boy and

Create a socket

bind () the socket to the address(es) and port(3 prep wock t odverts
Tell the socket to 1isten () for incoming clients ® open The dor (

accept () aclient connection
read () andwrite () tothat connection
close () the client socket

®@ huild the structinre

@umx* (,us“lomf‘ ;Y\ |in€‘.
© Iunsackon owurs

@ cuflomer lenves

12

ng
ckstomer. S)
1“6\‘3



YA UNIVERSITY of WASHINGTON L22: Client-side & Server-side Network Programming CSE333, Fall 2023

Servers

« Servers can have multiple IP addresses (“multihoming”)

= Usually have at least one externally-visible IP address, as well as a
local-only address (127.0.0.1)

+ The goals of a server socket are different than a client
socket

= Want to bind the socket to a particular port of one or more IP
addresses of the server

= Want to allow multiple clients to connect to the same port

« OS uses client IP address and port numbers to direct I/0 to the
correct server file descriptor

13



YA/ UNIVERSITY of WASHINGTON L22: Client-side & Server-side Network Programming CSE333, Fall 2023

Step 1: Figure out IP address(es) & Port

+» Step 1: getaddrinfo () invocation may or may not be
needed (but we’ll use it)

= Do you know your IP address(es) already?

- Static vs. dynamic IP address allocation
- Even if the machine has a static IP address, don’t wire it into the code
— either look it up dynamically or use a configuration file
= Can request listen on all local IP addresses by passing NUL 1L as
hostname and setting AT PASSIVE Iinhints.ai flags

- Effectistouse address 0.0.0.0 (IPv4) or : : (IPv6) X

Common and hard-to-find bug is
forgetting to set this ®

14



YA/ UNIVERSITY of WASHINGTON L22: Client-side & Server-side Network Programming CSE333, Fall 2023

Step 2: Create a Socket

+» Step 2: socket () callis same as before

= Can directly use constants or fields from result of
getaddrinfo ()

= Recall that this just returns a file descriptor — IP address and port
are not associated with socket yet

15



YA/ UNIVERSITY of WASHINGTON L22: Client-side & Server-side Network Programming CSE333, Fall 2023

Step 3: Bind the socket

‘(mm So(ch( )
“ | int bind(int sockfd, const struct sockaddr* %ddr,

-

socklen t addrlen);  feom ﬂdw,m@o()

" Looks nearly identical to connect () !

" Returns 0 on success, =1 on error

+» Some specifics for addr:

= Address family: AR INET or AF_INET6
- What type of IP connections can we accept?
- POSIX systems can handle IPv4 clients via IPv6 ©
= Port: portin network byte order (htons () is handy)

= Address: specify particular IP address or any IP address
- “Wildcard address” — INADDR ANY (IPv4), in6addr any (IPv6)

16



YA/ UNIVERSITY of WASHINGTON L22: Client-side & Server-side Network Programming CSE333, Fall 2023

Step 4: Listen for Incoming Clients

*[int listen(int sockfd, 1nt backlog);

= Tells the OS that the socket is a listening socket that clients can
connect to

" backlog: maximum length of connection queue
- Gets truncated, if necessary, to defined constant SOMAXCONN

- The OS will refuse new connections once queue is full until server
accept ()s them (removing them from the queue)

" Returns 0 on success, =1 on error

" Clients can start connecting to the socket as soon as 1listen ()
returns

AK- Can’t use a connection until you accept () it

17



W UNIVERSITY of WASHINGTON L22: Client-side & Server-side Network Programming CSE333, Fall 2023

Example #1

+ See server_bind_listen.cc
= Takes in a port number from the command line

= Opens a server socket, prints info, then listens for connections for
20 seconds

- Can connect to it using netcat (nc)

18



YA/ UNIVERSITY of WASHINGTON L22: Client-side & Server-side Network Programming CSE333, Fall 2023

Step 5: Accept a Client Connection

< | int accept(int sockfd, struct Sockadd@addr,
Socklen_t@ addrlen) ;

= Returns an active, ready-to-use socket file descriptor connected
to a client (or =1 on error)

- sockfd must have been created, bound, and listening

- Pulls a queued connection or waits for an incoming one

" addr and addrlen are output parameters o)
npw
e *addrlen should initially be set to sizeof (*addr), gets

overwrltfen with the size of the client address
Coptput)
. Address information of client is written into *addr
— Use inet ntop () to get the client’s printable IP address

— Use getnameinfo () to do a reverse DNS lookup on the client

19



W UNIVERSITY of WASHINGTON L22: Client-side & Server-side Network Programming CSE333, Fall 2023

Example #2

+ See server_accept _rw_close.cc
= Takes in a port number from the command line

® Opens a server socket, prints info, then listens for connections
- Can connect to it using netcat (nc)

= Accepts connections as they come

" Echoes any data the client sends to it on stdout and also sends
it back to the client

20



YA/ UNIVERSITY of WASHINGTON L22: Client-side & Server-side Network Programming CSE333, Fall 2023

Something to Note

« QOur server code is not concurrent
= Single thread of execution
" The thread blocks while waiting for the next connection

" The thread blocks waiting for the next message from the
connection

+ A crowd of clients is, by nature, concurrent

= While our server is handling the next client, all other clients are
stuck waiting for it ®

21



W UNIVERSITY of WASHINGTON L22: Client-side & Server-side Network Programming CSE333, Fall 2023

Extra Exercise #1

+ Write a program that:
= Reads DNS names, one per line, from stdin

" Translates each name to one or more |IP addresses
" Prints out each IP address to stdout, one per line

22



