
CSE333, Fall 2023L22: Client-side & Server-side Network Programming

Client-side and Server-side
Network Programming
CSE 333 Fall 2023

Instructor: Chris Thachuk

Teaching Assistants:

Ann Baturytski Humza Lala
 Alan Li
Noa Ferman Leanna Mi Nguyen
James Froelich Chanh Truong
Hannah Jiang Deeksha Vatwani
Yegor Kuznetsov Jennifer Xu

CSE333, Fall 2023L22: Client-side & Server-side Network Programming

Relevant Course Information

v Homework 3 due next Thursday
§ Late deadline (next Sunday at 10pm)
§ Limited help available during holidays

v Homework 4 released early next week

v Exercise 10 due Monday
§ Client-side programming

2

CSE333, Fall 2023L22: Client-side & Server-side Network Programming

Socket API: Client TCP Connection

v There are five steps:
1) Figure out the IP address and port to connect to
2) Create a socket
3) Connect the socket to the remote server
4) .read() and write() data using the socket
5) Close the socket

3

CSE333, Fall 2023L22: Client-side & Server-side Network Programming

Step 2: Creating a Socket

v Use the socket() system call
§ Creating a socket doesn’t bind it to a local address or port yet
§ Returns file descriptor or -1 on error

4

int socket(int domain, int type, int protocol);

#include <arpa/inet.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <iostream>

int main(int argc, char** argv) {
 int socket_fd = socket(AF_INET, SOCK_STREAM, 0);
 if (socket_fd == -1) {
 std::cerr << strerror(errno) << std::endl;
 return EXIT_FAILURE;
 }
 close(socket_fd);
 return EXIT_SUCCESS;
}

socket.cc

CSE333, Fall 2023L22: Client-side & Server-side Network Programming

Step 3: Connect to the Server

v The connect() system call establishes a connection to
a remote host
§

• sockfd: Socket file description from Step 2
• addr and addrlen: Usually from one of the address structures

returned by getaddrinfo in Step 1 (DNS lookup)
• Returns 0 on success and -1 on error

v connect() may take some time to return
§ It is a blocking call by default
§ The network stack within the OS will communicate with the

remote host to establish a TCP connection to it
• This involves ~2 round trips across the network

5

int connect(int sockfd, const struct sockaddr* addr,
 socklen_t addrlen);

CSE333, Fall 2023L22: Client-side & Server-side Network Programming

Connect Example

v See connect.cc

6

// Get an appropriate sockaddr structure.
struct sockaddr_storage addr;
size_t addrlen;
LookupName(argv[1], port, &addr, &addrlen);

// Create the socket.
int socket_fd = socket(addr.ss_family, SOCK_STREAM, 0);
if (socket_fd == -1) {
 cerr << "socket() failed: " << strerror(errno) << endl;
 return EXIT_FAILURE;
}

// Connect the socket to the remote host.
int res = connect(socket_fd,
 reinterpret_cast<sockaddr*>(&addr),
 addrlen);
if (res == -1) {
 cerr << "connect() failed: " << strerror(errno) << endl;
}

CSE333, Fall 2023L22: Client-side & Server-side Network Programming

Step 4: read()

v If there is data that has already been received by the
network stack, then read will return immediately with it
§ read() might return with less data than you asked for

v If there is no data waiting for you, by default read()
will block until something arrives
§ How might this cause deadlock?
§ Can read() return 0?

8

CSE333, Fall 2023L22: Client-side & Server-side Network Programming

Step 4: write()

v write() queues your data in a send buffer in the OS
and then returns
§ The OS transmits the data over the network in the background
§ When write() returns, the receiver probably has not yet

received the data!

v If there is no more space left in the send buffer, by default
write() will block

9

CSE333, Fall 2023L22: Client-side & Server-side Network Programming

Read/Write Example

v See sendreceive.cc

10

while (1) {
 int wres = write(socket_fd, readbuf, res);
 if (wres == 0) {
 cerr << "socket closed prematurely" << endl;
 close(socket_fd);
 return EXIT_FAILURE;
 }
 if (wres == -1) {
 if (errno == EINTR)
 continue;
 cerr << "socket write failure: " << strerror(errno) << endl;
 close(socket_fd);
 return EXIT_FAILURE;
 }
 break;
}

CSE333, Fall 2023L22: Client-side & Server-side Network Programming

Step 5: close()

v

§ Nothing special here – it’s the same function as with file I/O
§ Shuts down the socket and frees resources and file descriptors

associated with it on both ends of the connection

11

int close(int fd);

CSE333, Fall 2023L22: Client-side & Server-side Network Programming

Socket API: Server TCP Connection

v Pretty similar to clients, but with additional steps:
1) Figure out the IP address and port on which to listen
2) Create a socket
3) bind() the socket to the address(es) and port
4) Tell the socket to listen() for incoming clients
5) accept() a client connection
6) .read() and write() to that connection
7) close() the client socket

12

CSE333, Fall 2023L22: Client-side & Server-side Network Programming

Servers

v Servers can have multiple IP addresses (“multihoming”)
§ Usually have at least one externally-visible IP address, as well as a

local-only address (127.0.0.1)

v The goals of a server socket are different than a client
socket
§ Want to bind the socket to a particular port of one or more IP

addresses of the server
§ Want to allow multiple clients to connect to the same port

• OS uses client IP address and port numbers to direct I/O to the
correct server file descriptor

13

CSE333, Fall 2023L22: Client-side & Server-side Network Programming

Step 1: Figure out IP address(es) & Port

v Step 1: getaddrinfo() invocation may or may not be
needed (but we’ll use it)
§ Do you know your IP address(es) already?

• Static vs. dynamic IP address allocation
• Even if the machine has a static IP address, don’t wire it into the code

– either look it up dynamically or use a configuration file
§ Can request listen on all local IP addresses by passing NULL as
hostname and setting AI_PASSIVE in hints.ai_flags
• Effect is to use address 0.0.0.0 (IPv4) or :: (IPv6)

14

Common and hard-to-find bug is
forgetting to set this L

CSE333, Fall 2023L22: Client-side & Server-side Network Programming

Step 2: Create a Socket

v Step 2: socket() call is same as before
§ Can directly use constants or fields from result of
getaddrinfo()

§ Recall that this just returns a file descriptor – IP address and port
are not associated with socket yet

15

CSE333, Fall 2023L22: Client-side & Server-side Network Programming

Step 3: Bind the socket

v

§ Looks nearly identical to connect()!
§ Returns 0 on success, -1 on error

v Some specifics for addr:
§ Address family: AF_INET or AF_INET6

• What type of IP connections can we accept?
• POSIX systems can handle IPv4 clients via IPv6 J

§ Port: port in network byte order (htons() is handy)
§ Address: specify particular IP address or any IP address

• “Wildcard address” – INADDR_ANY (IPv4), in6addr_any (IPv6)

16

int bind(int sockfd, const struct sockaddr* addr,
 socklen_t addrlen);

CSE333, Fall 2023L22: Client-side & Server-side Network Programming

Step 4: Listen for Incoming Clients

v

§ Tells the OS that the socket is a listening socket that clients can
connect to

§ backlog: maximum length of connection queue
• Gets truncated, if necessary, to defined constant SOMAXCONN
• The OS will refuse new connections once queue is full until server
accept()s them (removing them from the queue)

§ Returns 0 on success, -1 on error

§ Clients can start connecting to the socket as soon as listen()
returns
• Can’t use a connection until you accept() it

17

int listen(int sockfd, int backlog);

CSE333, Fall 2023L22: Client-side & Server-side Network Programming

Example #1

v See server_bind_listen.cc
§ Takes in a port number from the command line
§ Opens a server socket, prints info, then listens for connections for

20 seconds
• Can connect to it using netcat (nc)

18

CSE333, Fall 2023L22: Client-side & Server-side Network Programming

Step 5: Accept a Client Connection

v

§ Returns an active, ready-to-use socket file descriptor connected
to a client (or -1 on error)
• sockfd must have been created, bound, and listening
• Pulls a queued connection or waits for an incoming one

§ addr and addrlen are output parameters
• *addrlen should initially be set to sizeof(*addr), gets

overwritten with the size of the client address
• Address information of client is written into *addr

– Use inet_ntop() to get the client’s printable IP address
– Use getnameinfo() to do a reverse DNS lookup on the client

19

int accept(int sockfd, struct sockaddr* addr,
 socklen_t* addrlen);

CSE333, Fall 2023L22: Client-side & Server-side Network Programming

Example #2

v See server_accept_rw_close.cc
§ Takes in a port number from the command line
§ Opens a server socket, prints info, then listens for connections

• Can connect to it using netcat (nc)

§ Accepts connections as they come
§ Echoes any data the client sends to it on stdout and also sends

it back to the client

20

CSE333, Fall 2023L22: Client-side & Server-side Network Programming

Something to Note

v Our server code is not concurrent
§ Single thread of execution
§ The thread blocks while waiting for the next connection
§ The thread blocks waiting for the next message from the

connection

v A crowd of clients is, by nature, concurrent
§ While our server is handling the next client, all other clients are

stuck waiting for it L

21

CSE333, Fall 2023L22: Client-side & Server-side Network Programming

Extra Exercise #1

v Write a program that:
§ Reads DNS names, one per line, from stdin
§ Translates each name to one or more IP addresses
§ Prints out each IP address to stdout, one per line

22

