L21: Sockets & DNS & Client-side

CSE333, Fall 2023

YA/ UNIVERSITY of WASHINGTON

Sockets & DNS & Client-side

CSE 333 Fall 2023

Instructor: Chris Thachuk

Teaching Assistants:

Ann Baturytski

Noa Ferman
James Froelich
Hannah Jiang
Yegor Kuznetsov

Humza Lala

Alan Li

Leanna Mi Nguyen
Chanh Truong
Deeksha Vatwani
Jennifer Xu

w UNIVERSITY of WASHINGTON L21: Sockets & DNS & Client-side

Relevant Course Information

« Exercise 10 will be released today
= ex10 due next Monday (11/20)

" Primarily adapting existing network programming code

<+ Homework 3 is due next Thursday (11/23)

= Usual reminder: don’t forget to tag, clone elsewhere, and
recompile (will need to copy libhw1.a and libhw?2.a)

= Get help by Wednesday (before holiday); i.e., operate as if

deadline is 11/22

+» Homework 4 will be released early next week

CSE333, Fall 2023

YA/ UNIVERSITY of WASHINGTON L21: Sockets & DNS & Client-side

Lecture Outline

+» Network Programming
= Sockets API

" Network Addresses
= DNS Lookup

+ Client-side (time permitting)

CSE333, Fall 2023

YA/ UNIVERSITY of WASHINGTON L21: Sockets & DNS & Client-side CSE333, Fall 2023

Files and File Descriptors

+» Remember open (), read (), write (), and
close ()?

= POSIX system calls for interacting with files
= open () returns a file descriptor

- An integer that represents an open file
- This file descriptor is then passed to read (), write (), and
close ()
" |nside the OS, the file descriptor is used to index into a table that

keeps track of any OS-level state associated with the file, such as
the file position

YA/ UNIVERSITY of WASHINGTON L21: Sockets & DNS & Client-side CSE333, Fall 2023

Networks and Sockets

«» UNIX likes to make all 1/0 look like file I/O

" Youuse read () andwrite () to communicate with remote
computers over the network!

= A file descriptor use for network communications is called a
socket

= Just like with files:

- Your program can have multiple network channels open at once

- You need to pass a file descriptor to read () and write () tolet the
OS know which network channel to use

YA/ UNIVERSITY of WASHINGTON

L21: Sockets & DNS & Client-side

CSE333, Fall 2023

File Descriptor Table

128.95.4.33
Web Server

M index.html

Con have multiple
files and network

connections open __ —

OS’s File Descriptor Table for the Process

File

Type

Connection

Descriptor

0 pipe stdin (console)

1 pipe stdout (console)

2 pipe stderr (console)

3 TCP local: 128.95.4.33:80
socket | remote: 44.1.19.32:7113

5 file index.html

8 file pic.png

9 TCP local: 128.95.4.33:80
socket | remote: 102.12.3.4:5544

01,2 always start as
stdin, stdont & stderr.

YA/ UNIVERSITY of WASHINGTON L21: Sockets & DNS & Client-side CSE333, Fall 2023

Types of Sockets

g+ Stream sockets — we wil fows here m 333

" For connection-oriented, point-to-point, reliable byte streams
-« Using TCP, SCTP, or other stream transports

+» Datagram sockets

" For connection-less, one-to-many, unreliable packets
- Using UDP or other packet transports

+ Raw sockets
" For layer-3 communication (raw IP packet manipulation)

W UNIVERSITY of WASHINGTON L21: Sockets & DNS & Client-side CSE333, Fall 2023

Stream Sockets

+ Typically used for client-server communications
= Client: An application that establishes a connection to a server
= Server: An application that receives connections from clients

= Can also be used for other forms of communication like peer-to-
peer

eserver

1) Establish connection:

2) Communicate:

3) Close connection: client « ° server

| |
pil

W UNIVERSITY of WASHINGTON L21: Sockets & DNS & Client-side CSE333, Fall 2023

Datagram Sockets

+» Often used as a building block
= No flow control, ordering, or reliability, so used less frequently
= e.g., streaming media applications or DNS lookups

1) Create sockets:

. N
= g
N4
10

2) Communicate:

YA/ UNIVERSITY of WASHINGTON L21: Sockets & DNS & Client-side CSE333, Fall 2023

The Sockets API

+ Berkeley sockets originated in 4.2BSD Unix (1983)

" |t is the standard API for network programming
- Available on most OSs

47" Writtenin C

« POSIX Socket API

= Aslight update of the Berkeley sockets API
- A few functions were deprecated or replaced
- Better support for multi-threading was added

11

YA/ UNIVERSITY of WASHINGTON L21: Sockets & DNS & Client-side CSE333, Fall 2023

Socket API: Client TCP Connection

« We'll start by looking at the API from the point of view of
a client connecting to a server over TCP

+ There are five steps:
1) Figure out the IP address and port to which to connect < "o&a/
) Create a socket
) Connect the socket to the remote server
\r,;oej 4) read () andwrite () data using the socket
)

Close the socket

12

YA/ UNIVERSITY of WASHINGTON L21: Sockets & DNS & Client-side CSE333, Fall 2023

Step 1: Figure Out IP Address and Port

+ Several parts:
= Network addresses
= Data structures for address info C data structures ®

= DNS (Domain Name System) — finding IP addresses

13

YA/ UNIVERSITY of WASHINGTON L21: Sockets & DNS & Client-side CSE333, Fall 2023

IPv4 Network Addresses

+ An IPv4 address is a 4-byte tuple (2* 00“9“’”65)
" For humans, written in “dotted-decimal notation”
" e.g.,128.95.4.1 (80:5f£:04:01 in hex)

« |Pv4 address exhaustion

= There are 232 = 4.3 billion IPv4 addresses

" There are = 8.01 billion people in the world (February 2023)

14

YA/ UNIVERSITY of WASHINGTON L21: Sockets & DNS & Client-side CSE333, Fall 2023

IPv6 Network Addresses

< An IPv6 address is a 16-byte tuple (2™ ad&resses)

= Typically written in “hextets” (groups of 4 hex digits)
() « Can omit leading zeros in hextets
(9 - Double-colon replaces consecutive sections of zeros

" e.g., 2d0130db8: £188£0000:0000:0000:0000: 1£33
. Shorthand: 2d01:db8:f188:%1£33

——

" Transition is still ongoing

- IPv4-mapped IPv6 addresses
— 128.95.4.1 mappedto : : ££££:128954.10or : : ££££:805£:401

 This unfortunately makes network programming more of a headache

®

15

YA/ UNIVERSITY of WASHINGTON

L21: Sockets & DNS & Client-side

CSE333, Fall 2023

Aside: IP Address Allocation

MAP or e

INTERNET

THE IPvH SPACE, 2006

£ prr—

Foauc 19 % " 2

T
o HP DEC RRD CSC om-rwf

tn DD
e e

F " Ged " 1t

Gerox "t APRE M\‘r.m

9 ' 30 2 e ”»
0

bawy

msc 1B\

2 Tche 3¢
S[TA MERe D&%‘ Nors, NERIT

54 55 e B

BOEING duPewr DLA

HAN JW
»%r‘n Ribo INET

AMERICA

N

235 % 237

" REG(s TRARS

“y L) irz "

(L] 5o ;] 154 32

This map is outdated
(2006), as all IPv4
addresses have been
allocated, but what
interesting observations
can you make?

= Geographic regions?

LATW AMERICA
"™ ¢

e = Companies?

172

lee "7

7o

R———

https://xkcd.com/195/

16

https://xkcd.com/195/

YA/ UNIVERSITY of WASHINGTON L21: Sockets & DNS & Client-side CSE333, Fall 2023

Aside: IP Address Allocation

+ Global IP address allocation (among other things) is

overseen by the Internet Assigned Numbers Authority
(IANA)

= “Currently it is a function of ICANN, a nonprofit private American
corporation established in 1998 primarily for this purpose under a
United States Department of Commerce contract. '
Before it, IANA was administered principally by
Jon Postel at [USC], under a contract... with the
United States Department of Defense.”

« Does this make sense? Is this fair?

= Historically, it does (Internet “born” in the US)

= Probably not entirely fair though — what values and priorities are

encoded in this allocation?
17

YA/ UNIVERSITY of WASHINGTON L21: Sockets & DNS & Client-side CSE333, Fall 2023

Computing Standards and Protocols

+» We’'ve seen tons of these! Many more exist!
= ASCII, IEEE 754, POSIX, IP, TCP/UDP, HTTP, etc.
" These have profound and long-lasting effects

+» Standards always encode the priorities of their creators
into data

>

= e.g., ASCIl prioritizes English and memory efficiency

= e.g., IP addresses allocated with a very US-centric view, often
granting larger-than-necessary swaths to the “big players” of the
time

«» Who was in the room when it happened? (i.e., creation)

>

«» Who has a seat at the table? (i.e., maintenance)

>

18

YA/ UNIVERSITY of WASHINGTON L21: Sockets & DNS & Client-side CSE333, Fall 2023

Linux Socket Addresses

+ Structures, constants, and helper functions available in
#include <arpa/inet.h>

« Addresses stored in network byte order (big endian)

+ Converting between host and network byte orders:
" uint3Z2_t htonl (uint3Z_ t hostlong);
" uint32 t ntohl (uint32 t netlong);
‘h’ for host byte order and ‘n’ for network byte order
- Also versions with ‘s’ for short (uint16 t instead)

«+ How to handle both IPv4 and IPv6?

= Use C structs for each, but make them somewhat similar

= Use defined constants to differentiate when to use each: <"\av~y other s’od:d)
AF INET forIPv4 and AF INET6 for IPv6 Ypes enist
(= ddvess Family 19

YA/ UNIVERSITY of WASHINGTON

L21: Sockets & DNS & Client-side

IPv4 Address Structures

// IPv4d 4-byte address

struct in addr {
uint32 t s addr;

bi

// Address 1in network byte order

// An IPv4-specific address structure

struct sockaddr in {

sa family t sin family;

\\sin_port_t sin port;
struct in addr sin_ addr;

unsigned char sin zero[8]

b g

// Address family:

// Port in network byte order‘Oé
// IPv4 address

// Pad out to 16 bytes

struct sockaddr in:

family| port addr

ze€ero

0 2 4

8 16

CSE333, Fall 2023

W UNIVERSITY of WASHINGTON L21: Sockets & DNS & Client-side CSE333, Fall 2023

@ PO" Eve I‘yWhere pollev.com/cse333

What will the first 4 bytes of the struct

sockaddr in be?

+ Represents a socket connected to 198.35.26.96
(c6:23:1a:60) on port 80 (0x50) stored on a little-endian
machine
= AF INET = 2 sin_fanily s port Sin — oddr

o2l (host) OO (netuork) Oxcb231a 60 (netork)

O (&
o_oz 0O o | 5o c6|l 23| 1a| 6

Ox 00025000 8|G0 |0CO|CO || O|O| O ®©
0x 02 000050 ox0 Chost)

. O0x 02005000 sin-Zero

We’re lost...

monwp

21

YA/ UNIVERSITY of WASHINGTON

IPv6 Address Structures

L21: Sockets & DNS & Client-side

CSE333, Fall 2023

\

b g

sa family t

in port t

\\ﬁstructin6addr

uint32 t

uint32 t

b g

[// IPv6 16-byte address
,struct in6_addr

uint8 t s6 _addr[16]; // Address in network byte order

sin6o family;
sinb port;
sino flowinfo;
sin6_ addr;
sin6 scope 1d;

//

//

// An IPvé-specific address structure
struct sockaddr in6 {

A an pnere

Address family:

// Port number
IPv6 flow infprmation
// IPv6 address
// Scope ID

struct sockaddr 1iné6:

addr

fam

port

flow

scope

0

2

4

8

<

0«(&7

&t (6 bytes

>

24

28

22

YA/ UNIVERSITY of WASHINGTON L21: Sockets & DNS & Client-side CSE333, Fall 2023

Generic Address Structures
S‘h'wf\' Sud(O(M\'*‘

(// A mostly-protocol-independent address structure. Z/)
// Pointer to this is parameter type for socket system calls.

struct sockaddr {
sa family t sa family; // Address family (AF * constants)
char sa data([l4]; // Socket address (size varies
// according to socket domain)

b g

// A structure big enough to hold either IPv4 or IPv6 structs
struct sockaddr storage { (at lest 2§ bytes)
sa family t ss family; // Address family

// padding and alignment,; don’t worry about the details
char ss padl[SS PAD1SIZE];
inte4d t ss align;
char @ ss pad2[SS PAD2SIZE];
i

\. J

" Commonly create struct sockaddr storage,then pass
pointer cast as struct sockaddr* to connect ()

23

YA/ UNIVERSITY of WASHINGTON L21: Sockets & DNS & Client-side CSE333, Fall 2023

Address Conversion o
6ddress S‘{’ril\s <S*V“LT oo F¥ O-
farmily s e.?rere/rhdib»\ Stadt inb_oddr®

X [int inet pton(int af, const char* src, void* dst);]

= Converts human-readable string representation (“presentation”)
to network byte ordered address

= Returns 1 (success), O (bad src), or =1 (error)

2

#}nclude <stdllp.h> genaddr.cc
#include <arpa/inet.h>

int main(int argc, char** argv) {
struct sockaddr in sa; // IPv4
struct sockaddr in6 sa6; // IPvé

// IPv4 string to sockaddr in (192.0.2.1 = C0:00:02:01).
inet pton (AF INET, "192.0.2.1", &(sa.sin_addr));

// IPv6 string to sockaddr iné6.
inet pton (AF INET6, "2001:db8:63b3:1::3490", &(sab6.sin6_addr));

return EXIT SUCCESS;

24

YA/ UNIVERSITY of WASHINGTON L21: Sockets & DNS & Client-side CSE333, Fall 2023

Address Conversion

add ress Aruct in_addr™ o
family shrudt inb- odbr®

+ | const char* inet pntop(int af, const void* src,
char* dst, socklen t size);

= Converts network addr in src into buffer dst of size size
" Returns dst on success; NULL on error

~

(['
#}nclude <stdllp.h> genstring.cc
#include <arpa/inet.h>

int main(int argc, char** argv) {
struct sockaddr in6 sab; // IPv6
char astring[INET6 ADDRSTRLEN]; // IPvé

// IPv6 string to sockaddr iné6.
inet pton (AF INETo6, "2001:0db8:63b3:1::3490", &(sab6.sin6_addr));

// sockaddr in6é to IPv6é string. g/or IVET_ ADDRSTR LEA)
inet ntop (AF INET6, &(sa6.sin6_addr), astring, INET6 ADDRSTRLEN) ;
std::cout << astring << std::endl; //20901:4Lg: 63531 - 3490

return EXIT SUCCESS;

YA/ UNIVERSITY of WASHINGTON

L21: Sockets & DNS & Client-side

Domain Name System

+» People tend to use DNS names, not IP addresses

" The Sockets API lets you convert between the two
= |t's a complicated process, though:
- A given DNS name can have many IP addresses

- Many different IP addresses can map to the same DNS name
— An IP address will reverse map into at most one DNS name

- A DNS lookup may require interacting with many DNS servers

+ You can use the Linux program “dig” to explore DNS
" dig @server name type (+short)

- server: specific name server to query
- type: A(IPv4), AAAA (IPv6), ANY (includes all types)

CSE333, Fall 2023

26

W UNIVERSITY of WASHINGTON L21: Sockets & DNS & Client-side CSE333, Fall 2023

DNS Hierarchy

Root
Name Servers

> 7 ~

i~ . L/ \V h N
Top-level
com cnh eeo org)
Domain Servers
/ ~ / \ / \ / ~
/ \\ SN2 1 b . 1 - / \\ R

I A - - I « ~ -
facebook google XX I netflix apache wikipedia KX
‘/ | \:A / / \ \\ ‘/ | \:A ‘/ | \:A / \ ‘/ | \:A
¥ /’ / \ S v ¥ / \ ¥
/ / \ L / \

/7 / \ N / \
P4 v « N v \
docs mail news oo news soe

27

YA/ UNIVERSITY of WASHINGTON L21: Sockets & DNS & Client-side CSE333, Fall 2023

Resolving DNS Names

+» The POSIX way is to use getaddrinfo ()

A complicated system call found in #include <netdb.h>

int getaddrinfo (const char* hostname,
const char* service,

const struct addrinfo* hints,
struct addrinfo** res¥- —) |

- Tellgetaddrinfo () which host and port you want resolved
— String representation for host: DNS name or IP address
- Setupa “hints” structure with constraints you want respected

- getaddrinfo () givesyou a list of results packed into an
“addrinfo” structure/linked list

— Returns 0 on success; returns negative number on failure

- Freethe struct addrinfo later using freeaddrinfo ()
f‘emr.s'mely frees res linked list

28

YA/ UNIVERSITY of WASHINGTON L21: Sockets & DNS & Client-side CSE333, Fall 2023

getaddrinfo O " donk care” options

«» getaddrinfo () arguments:
" hostname —domain name or IP address string

" service—port#(e.g., "80") or service name (e.g., "www")
of NULL/nullptr

" hints —filter results

struct addrinfo {
int ai flags; // additional flags

K int ai family; // AF INET, AF INET6, (AF UNSPEC
int ai socktype; // SOCK_STREAM, SOCK DGRAM, (0)
int ai protocol; // IPPROTO TCP, IPPROTO UDP, (0)
size t ai addrlen; // length of socket addr in bytes

¥« struct sockaddr* ai addr; // pointer to socket addr
char* al canonname; // canonical name

9 struct addrinfo* al next; // can form a linked 1ist

b7

29

YA/ UNIVERSITY of WASHINGTON L21: Sockets & DNS & Client-side CSE333, Fall 2023

DNS Lookup Procedure

struct addrinfo {
int ai flags; // additional flags
int ai family; // AF INET, AF INET6, AF UNSPEC
int al socktype; // SOCK STREAM, SOCK DGRAM, O
int al protocol; // IPPROTO TCP, IPPROTO UDP, 0
size t ai addrlen; // length of socket addr in bytes
struct sockaddr* ai addr; // pointer to socket addr
char* al canonname; // canonical name
struct addrinfo* ai next; // can form a linked list

b7

1) Createastruct addrinfo hints

2) Zeroouthints for “defaults”

3) Set specific fields of hints as desired

4) Callgetaddrinfo () using &éhints

5) Resulting linked list *res will have all fields appropriately set

: See dnsresolve.cc
. 30

CSE333, Fall 2023

W UNIVERSITY of WASHINGTON L21: Sockets & DNS & Client-side

Socket API: Client TCP Connection

+ There are five steps:
1) Figure out the IP address and port to connect to

2) Create a socket
3) Connect the socket to the remote server
4) read () andwrite () data using the socket

5) Close the socket

31

YA/ UNIVERSITY of WASHINGTON L21: Sockets & DNS & Client-side CSE333, Fall 2023

Step 2: Creating a Socket

K [int socket (int domain, int type, int protocol);

" Creating a socket doesn’t bind it to a local address or port yet
= Returns file descriptor or -1 on error

socket.cc

~

[#include <arpa/inet.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <iostream>

int main(int argc, char** argv) {

int socket fd = socket (AF INET, SOCK STREAM, O0);

if (socket fd == -1) { /M chek f erro-
std::cerr << strerror (errno) << std::endl;
return EXIT FAILURE;

}

close (socket £d); // close when done

return EXIT SUCCESS;

32

YA/ UNIVERSITY of WASHINGTON L21: Sockets & DNS & Client-side CSE333, Fall 2023

Step 3: Connect to the Server

+ The connect () system call establishes a connection to

wswally: stk sockaddr_storage ss;

a remote host reegret - cast<sikatdde ¥y (b 5s)

B | int connect(int sockfd, const struct sockaddr* addr,
socklen_t’%ddrlen)\4h

j\
- sockfd: Socket file description from Step 2 socket ()

- addr and addrlen: Usually from one of the address structures

: . Qe‘(‘ad(irir\‘&)()
returned by getaddrinfo in Step 1 (DNS lookup) N

« Returns 0 on success and =1 on error

+» connect () may take some time to return
= |tis a blocking call by default (walson an evert bebre reﬁfn'mg)

" The network stack within the OS will communicate with the
remote host to establish a TCP connection to it

 This involves ~2 round trips across the network

33

YA/ UNIVERSITY of WASHINGTON L21: Sockets & DNS & Client-side CSE333, Fall 2023

Connect Example

< See connect.cc

[// Get an appropriate sockaddr structure.
struct sockaddr storage addr;
size t addrlen;

LookupName (argv([1l], port, /7 does the 5éhdﬂﬂdﬁi)mﬂ

// Create the socket.
int (Socket fd)= socket (addr.ss \family, SOCK STREAM,
(socket fd == -1) {
cerr << "socket () failed: " <<
return EXIT FAILURE;

0):

trerror (errno) << endl;

// Connect the socket to the remote host.

int res = connect (svcket fd,
reinterpret cast<sockaddr*>(&addr),
addrlen—_
1f (res == -1) {
cerr << "connect () failed: " << strerror (errno) << endl;

34

YA/ UNIVERSITY of WASHINGTON L21: Sockets & DNS & Client-side CSE333, Fall 2023

Step 4: read ()

+ If there is data that has already been received by the
network stack, then read will return immediately with it
= read () might return with /ess data than you asked for

+ If there is no data waiting for you, by default read ()

will block until something arrives
= How might this cause deadlock? serec £ cliext have no data b vesd, bt bth all @)

= Can read () return 0? Yes, if womection is closed
4oc Netuork I/D.‘

=

re‘\'u\r r\/‘ \I&\\ we

N o]
' ZINTR) l_’_ l-c:\‘\’]@

L___J extt Y depends.. . 36

CSE333, Fall 2023

W UNIVERSITY of WASHINGTON L21: Sockets & DNS & Client-side

Step 4: write ()

+» write () queues your data in a send buffer in the OS

and then returns
" The OS transmits the data over the network in the background

" Whenwrite () returns, the receiver probably has not yet
received the data!

+ If there is no more space left in the send buffer, by default
write () will block

37

YA/ UNIVERSITY of WASHINGTON L21: Sockets & DNS & Client-side CSE333, Fall 2023

Read/Write Example

+ See sendreceive.cc

(while (1) f{

int wres = write(socket fd, readbuf, res);

1f (wres == 0) {
cerr << "socket closed prematurely" << endl;
close (socket fd);
return EXIT FAILURE;

}

if (wres == -1) {
if (errno == EINTR)

continue;

cerr << "socket write failure: " << strerror(errno) << endl;
close (socket fd);
return EXIT FAILURE;

}

break;

38

YA/ UNIVERSITY of WASHINGTON L21: Sockets & DNS & Client-side CSE333, Fall 2023

Step 5: close ()

*[int close (int fd);]

= Nothing special here —it’s the same function as with file I/O

= Shuts down the socket and frees resources and file descriptors
associated with it on both ends of the connection

39

