
CSE333, Fall 2023L21: Sockets & DNS & Client-side

Sockets & DNS & Client-side
CSE 333 Fall 2023

Instructor: Chris Thachuk

Teaching Assistants:

Ann Baturytski Humza Lala
 Alan Li
Noa Ferman Leanna Mi Nguyen
James Froelich Chanh Truong
Hannah Jiang Deeksha Vatwani
Yegor Kuznetsov Jennifer Xu

CSE333, Fall 2023L21: Sockets & DNS & Client-side

Relevant Course Information

v Exercise 10 will be released today
§ ex10 due next Monday (11/20)
§ Primarily adapting existing network programming code

v Homework 3 is due next Thursday (11/23)
§ Usual reminder: don’t forget to tag, clone elsewhere, and

recompile (will need to copy libhw1.a and libhw2.a)
§ Get help by Wednesday (before holiday); i.e., operate as if

deadline is 11/22

v Homework 4 will be released early next week

3

CSE333, Fall 2023L21: Sockets & DNS & Client-side

Lecture Outline

v Network Programming
§ Sockets API
§ Network Addresses
§ DNS Lookup

v Client-side (time permitting)

4

CSE333, Fall 2023L21: Sockets & DNS & Client-side

Files and File Descriptors

v Remember open(), read(), write(), and
close()?
§ POSIX system calls for interacting with files
§ open() returns a file descriptor

• An integer that represents an open file
• This file descriptor is then passed to read(), write(), and
close()

§ Inside the OS, the file descriptor is used to index into a table that
keeps track of any OS-level state associated with the file, such as
the file position

5

CSE333, Fall 2023L21: Sockets & DNS & Client-side

Networks and Sockets

v UNIX likes to make all I/O look like file I/O
§ You use read() and write() to communicate with remote

computers over the network!
§ A file descriptor use for network communications is called a

socket
§ Just like with files:

• Your program can have multiple network channels open at once
• You need to pass a file descriptor to read() and write() to let the

OS know which network channel to use

6

CSE333, Fall 2023L21: Sockets & DNS & Client-side

File Descriptor Table
OS’s File Descriptor Table for the Process

File
Descriptor Type Connection

0 pipe stdin (console)

1 pipe stdout (console)

2 pipe stderr (console)

3 TCP
socket

local: 128.95.4.33:80
remote: 44.1.19.32:7113

5 file index.html

8 file pic.png

9 TCP
socket

local: 128.95.4.33:80
remote: 102.12.3.4:5544

7

Web Server

in
de

x.
ht

m
l

pi
c.

pn
g

client client

128.95.4.33

fd 5 fd 8 fd 9 fd 3

Can have multiple
files and network
connections open 0,1,2 always start as

stdin, stdout & stderr.

CSE333, Fall 2023L21: Sockets & DNS & Client-side

Types of Sockets

v Stream sockets
§ For connection-oriented, point-to-point, reliable byte streams

• Using TCP, SCTP, or other stream transports

v Datagram sockets
§ For connection-less, one-to-many, unreliable packets

• Using UDP or other packet transports

v Raw sockets
§ For layer-3 communication (raw IP packet manipulation)

8

CSE333, Fall 2023L21: Sockets & DNS & Client-side

Stream Sockets

v Typically used for client-server communications
§ Client: An application that establishes a connection to a server
§ Server: An application that receives connections from clients
§ Can also be used for other forms of communication like peer-to-

peer

1) Establish connection:

2) Communicate:

3) Close connection:

9

client server

client server

client server

CSE333, Fall 2023L21: Sockets & DNS & Client-side

Datagram Sockets

v Often used as a building block
§ No flow control, ordering, or reliability, so used less frequently
§ e.g., streaming media applications or DNS lookups

1) Create sockets:

2) Communicate:

10

host

host host

host

host

host host

host

CSE333, Fall 2023L21: Sockets & DNS & Client-side

The Sockets API

v Berkeley sockets originated in 4.2BSD Unix (1983)
§ It is the standard API for network programming

• Available on most OSs

§ Written in C

v POSIX Socket API
§ A slight update of the Berkeley sockets API

• A few functions were deprecated or replaced
• Better support for multi-threading was added

11

CSE333, Fall 2023L21: Sockets & DNS & Client-side

Socket API: Client TCP Connection

v We’ll start by looking at the API from the point of view of
a client connecting to a server over TCP

v There are five steps:
1) Figure out the IP address and port to which to connect
2) Create a socket
3) Connect the socket to the remote server
4) .read() and write() data using the socket
5) Close the socket

12

CSE333, Fall 2023L21: Sockets & DNS & Client-side

Step 1: Figure Out IP Address and Port

v Several parts:
§ Network addresses
§ Data structures for address info
§ DNS (Domain Name System) – finding IP addresses

13

C data structures L

CSE333, Fall 2023L21: Sockets & DNS & Client-side

IPv4 Network Addresses

v An IPv4 address is a 4-byte tuple
§ For humans, written in “dotted-decimal notation”
§ e.g., 128.95.4.1 (80:5f:04:01 in hex)

v IPv4 address exhaustion
§ There are 232 ≈ 4.3 billion IPv4 addresses
§ There are ≈ 8.01 billion people in the world (February 2023)

14

CSE333, Fall 2023L21: Sockets & DNS & Client-side

IPv6 Network Addresses

v An IPv6 address is a 16-byte tuple
§ Typically written in “hextets” (groups of 4 hex digits)

• Can omit leading zeros in hextets
• Double-colon replaces consecutive sections of zeros

§ e.g., 2d01:0db8:f188:0000:0000:0000:0000:1f33
• Shorthand: 2d01:db8:f188::1f33

§ Transition is still ongoing
• IPv4-mapped IPv6 addresses

– 128.95.4.1 mapped to ::ffff:128.95.4.1 or ::ffff:805f:401

• This unfortunately makes network programming more of a headache
L

15

CSE333, Fall 2023L21: Sockets & DNS & Client-side

Aside: IP Address Allocation

16

v This map is outdated
(2006), as all IPv4
addresses have been
allocated, but what
interesting observations
can you make?
§ Geographic regions?
§ Companies?

https://xkcd.com/195/

https://xkcd.com/195/

CSE333, Fall 2023L21: Sockets & DNS & Client-side

Aside: IP Address Allocation

v Global IP address allocation (among other things) is
overseen by the Internet Assigned Numbers Authority
(IANA)
§ “Currently it is a function of ICANN, a nonprofit private American

corporation established in 1998 primarily for this purpose under a
United States Department of Commerce contract.
Before it, IANA was administered principally by
Jon Postel at [USC], under a contract… with the
United States Department of Defense.”

v Does this make sense? Is this fair?
§ Historically, it does (Internet “born” in the US)
§ Probably not entirely fair though – what values and priorities are

encoded in this allocation?
17

CSE333, Fall 2023L21: Sockets & DNS & Client-side

Computing Standards and Protocols

v We’ve seen tons of these! Many more exist!
§ ASCII, IEEE 754, POSIX, IP, TCP/UDP, HTTP, etc.
§ These have profound and long-lasting effects

v Standards always encode the priorities of their creators
into data
§ e.g., ASCII prioritizes English and memory efficiency
§ e.g., IP addresses allocated with a very US-centric view, often

granting larger-than-necessary swaths to the “big players” of the
time

v Who was in the room when it happened? (i.e., creation)
v Who has a seat at the table? (i.e., maintenance)

18

CSE333, Fall 2023L21: Sockets & DNS & Client-side

Linux Socket Addresses

v Structures, constants, and helper functions available in
#include <arpa/inet.h>

v Addresses stored in network byte order (big endian)

v Converting between host and network byte orders:
§ uint32_t htonl(uint32_t hostlong);
§ uint32_t ntohl(uint32_t netlong);

• ‘h’ for host byte order and ‘n’ for network byte order
• Also versions with ‘s’ for short (uint16_t instead)

v How to handle both IPv4 and IPv6?
§ Use C structs for each, but make them somewhat similar
§ Use defined constants to differentiate when to use each:
AF_INET for IPv4 and AF_INET6 for IPv6

19

CSE333, Fall 2023L21: Sockets & DNS & Client-side

IPv4 Address Structures

20

// IPv4 4-byte address
struct in_addr {
 uint32_t s_addr; // Address in network byte order
};

// An IPv4-specific address structure
struct sockaddr_in {
 sa_family_t sin_family; // Address family: AF_INET
 in_port_t sin_port; // Port in network byte order
 struct in_addr sin_addr; // IPv4 address
 unsigned char sin_zero[8]; // Pad out to 16 bytes
};

family port addr zero

struct sockaddr_in:

160 2 4 8

CSE333, Fall 2023L21: Sockets & DNS & Client-side

21

pollev.com/cse333

What will the first 4 bytes of the struct
sockaddr_in be?
v Represents a socket connected to 198.35.26.96

(c6:23:1a:60) on port 80 (0x50) stored on a little-endian
machine
§ AF_INET = 2

A. 0x 00 02 00 50
B. 0x 00 02 50 00
C. 0x 02 00 00 50
D. 0x 02 00 50 00
E. We’re lost…

0

8

CSE333, Fall 2023L21: Sockets & DNS & Client-side

IPv6 Address Structures

22

// IPv6 16-byte address
struct in6_addr {
 uint8_t s6_addr[16]; // Address in network byte order
};

// An IPv6-specific address structure
struct sockaddr_in6 {
 sa_family_t sin6_family; // Address family: AF_INET6
 in_port_t sin6_port; // Port number
 uint32_t sin6_flowinfo; // IPv6 flow information
 struct in6_addr sin6_addr; // IPv6 address
 uint32_t sin6_scope_id; // Scope ID
};

fam port flow scope

struct sockaddr_in6:
addr

240 2 4 8 28

CSE333, Fall 2023L21: Sockets & DNS & Client-side

Generic Address Structures

§ Commonly create struct sockaddr_storage, then pass
pointer cast as struct sockaddr* to connect()

23

// A mostly-protocol-independent address structure.
// Pointer to this is parameter type for socket system calls.
struct sockaddr {
 sa_family_t sa_family; // Address family (AF_* constants)
 char sa_data[14]; // Socket address (size varies
 // according to socket domain)
};

// A structure big enough to hold either IPv4 or IPv6 structs
struct sockaddr_storage {
 sa_family_t ss_family; // Address family

 // padding and alignment; don’t worry about the details
 char __ss_pad1[_SS_PAD1SIZE];
 int64_t __ss_align;
 char __ss_pad2[_SS_PAD2SIZE];
};

CSE333, Fall 2023L21: Sockets & DNS & Client-side

Address Conversion
v int inet_pton(int af, const char* src, void* dst);

§ Converts human-readable string representation (“presentation”)
to network byte ordered address

§ Returns 1 (success), 0 (bad src), or -1 (error)

24

#include <stdlib.h>
#include <arpa/inet.h>

int main(int argc, char** argv) {
 struct sockaddr_in sa; // IPv4
 struct sockaddr_in6 sa6; // IPv6

 // IPv4 string to sockaddr_in (192.0.2.1 = C0:00:02:01).
 inet_pton(AF_INET, "192.0.2.1", &(sa.sin_addr));

 // IPv6 string to sockaddr_in6.
 inet_pton(AF_INET6, "2001:db8:63b3:1::3490", &(sa6.sin6_addr));

 return EXIT_SUCCESS;
}

genaddr.cc

int inet_pton(int af, const char* src, void* dst);

CSE333, Fall 2023L21: Sockets & DNS & Client-side

Address Conversion
v int inet_pton(int af, const char* src, void* dst);

§ Converts network addr in src into buffer dst of size size
§ Returns dst on success; NULL on error

25

#include <stdlib.h>
#include <arpa/inet.h>

int main(int argc, char** argv) {
 struct sockaddr_in6 sa6; // IPv6
 char astring[INET6_ADDRSTRLEN]; // IPv6

 // IPv6 string to sockaddr_in6.
 inet_pton(AF_INET6, "2001:0db8:63b3:1::3490", &(sa6.sin6_addr));

 // sockaddr_in6 to IPv6 string.
 inet_ntop(AF_INET6, &(sa6.sin6_addr), astring, INET6_ADDRSTRLEN);
 std::cout << astring << std::endl;

 return EXIT_SUCCESS;
}

genstring.cc

const char* inet_ntop(int af, const void* src,
 char* dst, socklen_t size);

CSE333, Fall 2023L21: Sockets & DNS & Client-side

Domain Name System

v People tend to use DNS names, not IP addresses
§ The Sockets API lets you convert between the two
§ It’s a complicated process, though:

• A given DNS name can have many IP addresses
• Many different IP addresses can map to the same DNS name

– An IP address will reverse map into at most one DNS name

• A DNS lookup may require interacting with many DNS servers

v You can use the Linux program “dig” to explore DNS
§ dig @server name type (+short)

• server: specific name server to query
• type: A (IPv4), AAAA (IPv6), ANY (includes all types)

26

CSE333, Fall 2023L21: Sockets & DNS & Client-side

DNS Hierarchy

27

.

mail newsdocs www

cncom orgedu • • •

google netflixfacebook • • • wikipedia fsfapache • • •

Root
Name Servers

Top-level
Domain Servers

• • • news www• • •

CSE333, Fall 2023L21: Sockets & DNS & Client-side

Resolving DNS Names

v The POSIX way is to use getaddrinfo()
§ A complicated system call found in #include <netdb.h>

§ Basic idea:

• Tell getaddrinfo() which host and port you want resolved
– String representation for host: DNS name or IP address

• Set up a “hints” structure with constraints you want respected
• getaddrinfo() gives you a list of results packed into an

“addrinfo” structure/linked list
– Returns 0 on success; returns negative number on failure

• Free the struct addrinfo later using freeaddrinfo()

28

int getaddrinfo(const char* hostname,
 const char* service,
 const struct addrinfo* hints,
 struct addrinfo** res);

CSE333, Fall 2023L21: Sockets & DNS & Client-side

getaddrinfo

v getaddrinfo() arguments:
§ hostname – domain name or IP address string
§ service – port # (e.g., "80") or service name (e.g., "www")

 or NULL/nullptr

§ hints – filter results

29

struct addrinfo {
 int ai_flags; // additional flags
 int ai_family; // AF_INET, AF_INET6, AF_UNSPEC
 int ai_socktype; // SOCK_STREAM, SOCK_DGRAM, 0
 int ai_protocol; // IPPROTO_TCP, IPPROTO_UDP, 0
 size_t ai_addrlen; // length of socket addr in bytes
 struct sockaddr* ai_addr; // pointer to socket addr
 char* ai_canonname; // canonical name
 struct addrinfo* ai_next; // can form a linked list
};

CSE333, Fall 2023L21: Sockets & DNS & Client-side

DNS Lookup Procedure

1) Create a struct addrinfo hints
2) Zero out hints for “defaults”
3) Set specific fields of hints as desired
4) Call getaddrinfo() using &hints
5) Resulting linked list *res will have all fields appropriately set

v See dnsresolve.cc
30

struct addrinfo {
 int ai_flags; // additional flags
 int ai_family; // AF_INET, AF_INET6, AF_UNSPEC
 int ai_socktype; // SOCK_STREAM, SOCK_DGRAM, 0
 int ai_protocol; // IPPROTO_TCP, IPPROTO_UDP, 0
 size_t ai_addrlen; // length of socket addr in bytes
 struct sockaddr* ai_addr; // pointer to socket addr
 char* ai_canonname; // canonical name
 struct addrinfo* ai_next; // can form a linked list
};

CSE333, Fall 2023L21: Sockets & DNS & Client-side

Socket API: Client TCP Connection

v There are five steps:
1) Figure out the IP address and port to connect to
2) Create a socket
3) Connect the socket to the remote server
4) .read() and write() data using the socket
5) Close the socket

31

CSE333, Fall 2023L21: Sockets & DNS & Client-side

Step 2: Creating a Socket

v Use the socket() system call
§ Creating a socket doesn’t bind it to a local address or port yet
§ Returns file descriptor or -1 on error

32

int socket(int domain, int type, int protocol);

#include <arpa/inet.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <iostream>

int main(int argc, char** argv) {
 int socket_fd = socket(AF_INET, SOCK_STREAM, 0);
 if (socket_fd == -1) {
 std::cerr << strerror(errno) << std::endl;
 return EXIT_FAILURE;
 }
 close(socket_fd);
 return EXIT_SUCCESS;
}

socket.cc

CSE333, Fall 2023L21: Sockets & DNS & Client-side

Step 3: Connect to the Server

v The connect() system call establishes a connection to
a remote host
§

• sockfd: Socket file description from Step 2
• addr and addrlen: Usually from one of the address structures

returned by getaddrinfo in Step 1 (DNS lookup)
• Returns 0 on success and -1 on error

v connect() may take some time to return
§ It is a blocking call by default
§ The network stack within the OS will communicate with the

remote host to establish a TCP connection to it
• This involves ~2 round trips across the network

33

int connect(int sockfd, const struct sockaddr* addr,
 socklen_t addrlen);

CSE333, Fall 2023L21: Sockets & DNS & Client-side

Connect Example

v See connect.cc

34

// Get an appropriate sockaddr structure.
struct sockaddr_storage addr;
size_t addrlen;
LookupName(argv[1], port, &addr, &addrlen);

// Create the socket.
int socket_fd = socket(addr.ss_family, SOCK_STREAM, 0);
if (socket_fd == -1) {
 cerr << "socket() failed: " << strerror(errno) << endl;
 return EXIT_FAILURE;
}

// Connect the socket to the remote host.
int res = connect(socket_fd,
 reinterpret_cast<sockaddr*>(&addr),
 addrlen);
if (res == -1) {
 cerr << "connect() failed: " << strerror(errno) << endl;
}

CSE333, Fall 2023L21: Sockets & DNS & Client-side

Step 4: read()

v If there is data that has already been received by the
network stack, then read will return immediately with it
§ read() might return with less data than you asked for

v If there is no data waiting for you, by default read()
will block until something arrives
§ How might this cause deadlock?
§ Can read() return 0?

36

CSE333, Fall 2023L21: Sockets & DNS & Client-side

Step 4: write()

v write() queues your data in a send buffer in the OS
and then returns
§ The OS transmits the data over the network in the background
§ When write() returns, the receiver probably has not yet

received the data!

v If there is no more space left in the send buffer, by default
write() will block

37

CSE333, Fall 2023L21: Sockets & DNS & Client-side

Read/Write Example

v See sendreceive.cc

38

while (1) {
 int wres = write(socket_fd, readbuf, res);
 if (wres == 0) {
 cerr << "socket closed prematurely" << endl;
 close(socket_fd);
 return EXIT_FAILURE;
 }
 if (wres == -1) {
 if (errno == EINTR)
 continue;
 cerr << "socket write failure: " << strerror(errno) << endl;
 close(socket_fd);
 return EXIT_FAILURE;
 }
 break;
}

CSE333, Fall 2023L21: Sockets & DNS & Client-side

Step 5: close()

v

§ Nothing special here – it’s the same function as with file I/O
§ Shuts down the socket and frees resources and file descriptors

associated with it on both ends of the connection

39

int close(int fd);

