CSE333, Fall 2023

YA/ UNIVERSITY of WASHINGTON L18: C++ Inheritance |

C++ Inheritance |
CSE 333 Fall 2023

Instructor: Chris Thachuk

Teaching Assistants:

Ann Baturytski Humza Lala
Yuquan Deng Alan Li

Noa Ferman Leanna Mi Nguyen
James Froelich Chanh Truong
Hannah Jiang Jennifer Xu

Yegor Kuznetsov

YA/ UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Fall 2023

Relevant Course Information

+ Exercise 9 released (due 11/15)

" C++ smart pointers and inheritance

% No lecture this Friday (11/10; Veterans Day)

+ Graded midterms released today
= Ed announcement will go out later today
" One question turned into a bonus
" Mean: ~75.3 %, StdDev: ~18.3%
= Regrade request window will open Thursday, close Saturday

YA/ UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Fall 2023

Overview of Next Two Lectures

% C++ inheritance
= Review of basic idea (pretty much the same as in Java)

= What’s different in C++ (compared to Java)
- Static vs. dynamic dispatch — virtual functions and vtables (optional)
- Pure virtual functions, abstract classes, why no Java “interfaces”

- Assignment slicing, using class hierarchies with STL
" Castsin C++

« Reference: C++ Primer, Chapter 15

YA/ UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Fall 2023

Lecture Outline

+ Inheritance motivation & C++ Syntax
+» Polymorphism & Dynamic Dispatch
+ Virtual Tables & Virtual Table Pointers

YA/ UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Fall 2023

Stock Portfolio Example

+ A portfolio represents a person’s financial investments
= Each asset has a cost (i.e., how much was paid for it) and a market
value (i.e., how much it is worth)

- The difference between the cost and market value is the profit (or
loss)

= Different assets compute market value in different ways

- A stock that you own has a ticker symbol (e.g., “GO0OG”), a number of
shares, share price paid, and current share price

- A dividend stock is a stock that also has dividend payments
- Cash is an asset that never incurs a profit or loss

(Credit: thanks to Marty Stepp for this example)

L18: C++ Inheritance |

YA/ UNIVERSITY of WASHINGTON

CSE333, Fall 2023

Design Without Inheritance

% One class per asset type:

= Redundant!

DividendStock

= Cannot treat multiple investments together

symbol symbol amount
total shares total shares GetMarketvalue ()
total cost total cost S~
current price current price |jpember>
- N
GetMarketValue () dividends_ _“LQ
GetProfit () GetMarketvalue() |
GetCost () GetProfit () wgvﬁs
GetCost ()

- e.g., can’t have an array or vector of different assets
pL—' V\A\»ﬁ loa 8[SGme ',yfe
+» See sample codein initial/ directory

YA/ UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Fall 2023

Inheritance

+ A parent-child “is-a” relationship between classes

= A child (derived class) extends a parent (base class)

“l«rgl\cr " on L\eiro\nky
st oF subclass Superclass Base Class
“lomer” on henvorchy Subclass Derived Class

Supersd Gf'éu(erclasy
"= Mean the same things. You’ll hear both.

YA/ UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Fall 2023

Inheritance

+ A parent-child “is-a” relationship between classes

= A child (derived class) extends a parent (base class)

+« Benefits:

" Code reuse

 Children can automatically inherit code from parents
= Polymorphism

P

- Ability to redefine existing behavior but preserve the interface

 Children can override the behavior of the parent

« Others can make calls on objects without knowing which part of the
inheritance tree it is in

= Extensibility

« Children can add behavior

YA/ UNIVERSITY of WASHINGTON

L18: C++ Inheritance |

Design With Inheritance

symbol
total_shares_
total_cost_

GetProfit ()
GetCost ()

Asset (abstract)

GetMarketValue ()
GetProfit ()

GetCost ()

current price_
GetMarketValue () DividendStock

symbol
total shares
total cost
current price
dividends__

GetMarketValue ()
GetProfit ()

GetCost ()

CSE333, Fall 2023

amount_

GetMarketValue ()

YA/ UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Fall 2023

Like Java: Access Modifiers

+» public: visible to all other classes

+» protected: visibleto current class and its derived
classes

+» private: visible only to the current class

+» Use protected for class members only when

= Class is designed to be extended by derived classes

= Derived classes must have access but clients should not be
allowed

10

CSE333, Fall 2023

YA/ UNIVERSITY of WASHINGTON L18: C++ Inheritance |

Class Derivation List

+» Comma-separated list of classes to inherit from:

~

(#include "BaseClass.h"

class Name : public BaseClass {

\}’. J

" Focus on single inheritance, but multiple inheritance possible
: dNUIQ Baseld) r)\a\9|.‘(B«;cl {

+ Almost always you will want public inheritance

= Acts like extends does in Java

= Any member that is non-private in the base class is the same in
the derived class; both interface and implementation inheritance

#¢ Except that constructors, destructors, copy constructor, and
assignment operator are never inherited

11

YA/ UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Fall 2023

Back to Stocks

1
3 01— totz{m:EaEes
total_shares__ fot I N —
total cost ota —COS,—
current orice current price
_P - dividends__
GetMarketValue ()
. GetMarketValue ()
GetProfit () ,
GetProfit ()
GetCost ()
GetCost ()

BASE DERIVED

12

YA/ UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Fall 2023

Back to Stocks

symbol dividends
- symbol _ —
total_shares__ total shares
total cost total cost_
i current price
current price_ Y ;v 1 _() _ - GetProfit ()
etMarketValue L
GetMarketV.alue () Getrrofit() 4= [L - = GetCost ()
GetProfit () GetCost () 4= 7] PayDividend ()
GetCost ()

+ A derived class:
" |nherits the behavior and state (specification) of the base class
o some of the base class” member functions (opt.)

= Extends the base class with new member functions, variables
(opt.)

13

YA/ UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Fall 2023

Lecture Outline

+ Inheritance motivation & C++ Syntax
+» Polymorphism & Dynamic Dispatch
+ Virtual Tables & Virtual Table Pointers

14

YA/ UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Fall 2023

Polymorphism in C++

+ InJava: PromisedType var = new ActualType () ;

" var is a reference (different term than C++ reference) to an
object of ActualType on the Heap

= ActualType must be the same class or a subclass of
PromisedType

¢ In C++: PromisedType* var p = new ActualType();

" var pisapointerto an object of ActualType on the Heap

= ActualType must be the same or a derived class of
PromisedType

= (also works with references)

PromisedType defines the interface (i.e., what can be called on

var p), but ActualType may determine which version gets

invoked
15

YA/ UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Fall 2023

Dynamic Dispatch (like Java)

+ Usually, when a derived function is available for an object,
we want the derived function to be invoked

= This requires a run time decision of what code to invoke

+» A member function invoked on an object should be the
most-derived function accessible to the object’s visible
type

= Can determine what to invoke from the object itself

Stock 7
+ Example: Dividend Stock.
" volid PrintStock (Stock* s) { s->Print(); }
= Calls the appropriate Print () without knowing the actual type

of *s, other than it is some sort of Stock

16

YA/ UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Fall 2023

Dynamic Dispatch Example

<+ When a member function is invoked on an object:

= The most-derived function accessible to the object’s visible type is
invoked (decided at run time based on actual type of the object)

[double DividendStock: :GetMarketValue () const {
return get shares() * get share price() + dividends ;

}

ihedted |[(double "DividendStock"::GetProfit () const { // inherited
€m“5hq%2 return GetMarketValue () - GetCost () ;
}

tskwu’.,wo)w Dividend Stock :: GetMa-ketValue () DividendStock.cc

\.

~\

[double Stock::GetMarketValue() const {
return get shares() * get share price();

}

F double Stock::GetProfit() const {
return GetMarketValue () - GetCost():;

} Stock.cc

17

YA/ UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Fall 2023

Dynamic Dispatch Example

(#include "Stock.h"
#include "DividendStock.h"

DividendStock dividend() ;
DividendStock* ds = ÷nd; evmyrm*6%<9wkk\Nhﬁﬂf
Stock* s = ÷nd; // why 1is this allowed?\SPMTﬁ"DNd&AguksWhA&C

// Invokes DividendStock::GetMarketValue ()
ds->GetMarketValue () ; <~\\
called on Dividend Shck shject
// Invokes DividendStock:/GetMarketValue ()
s—->GetMarketValue (); <

// invokes Stock::GetProfit (), since that method 1is inherited.
// Stock::GetProfit () invokes DividendStock::GetMarketValue/(),
// since that 1s the most-derived accessible function.
s—->GetProfit () ;

18

YA/ UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Fall 2023

Requesting Dynamic Dispatch (C++)

« Prefix the member function declaration with the
virtual keyword

= Derived/child functions don’t need to repeat virtual, but was
traditionally good style to do so

= This is how method calls work in Java (no virtual keyword needed)

" You almost always want functions to be virtual
» override keyword (C++11) sicia 4o @overcide in Java

" Tells compiler this method should be overriding an inherited
virtual function — always use if available

" Prevents overloading vs. overriding bugs

+ Both of these are technically optional in derived classes

= Be consistent and follow local conventions (Google Style Guide
saysnovirtual if override)

19

YA/ UNIVERSITY of WASHINGTON

Most-Derived

\

r

class A {
public:

// Foo will use dynamic dispatch
virtual void Foo () ;

A".'.Foo()@
class.B \3
public: B=TFoo ()

// B::Foo overrides A::Foo

virtual void Foo () ;
@/

¥

public A {

class C public B {
// C inherits B::Foo()
¥

L18: C++ Inheritance |

(void Bar() |

A* a ptr;
C c;
a ptr = &c;

// Whose Foo() 1s called?
a_ptr->Foo(); /B Foo()

¥
_J

}

L

@ has P> deintion

CSE333, Fall 2023

20

YA/ UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Fall 2023

pollev.com/cse333

@ Poll Everywhere

rClass A |
public:
virtual void Foo () ;

Whose Foo () is called?

/@ I

("
6%13 4_,__V01d Bar () { class B : public A {
/©\ AT a_ptri blic:
N - public:
©) @ £oes virtual void Foo () ;
(11 (12 // QOl: class C : public B {
A. a ptr = &cy I
a ptr—>Foo£); .
- R Foold class D : public C {
B. A D |
' /) 02: public:
C. B B l a ptr = &e; virtual void Foo () ;
a ptr->Foo () ; b
Do B D } o BZZPOD(> .
L) | class E : public C {

E. We're lost... };

21

YA/ UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Fall 2023

Lecture Outline

+ Inheritance motivation & C++ Syntax
+» Polymorphism & Dynamic Dispatch
+ Virtual Tables & Virtual Table Pointers (next time)

22

YA/ UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Fall 2023

How Can This Possibly Work?

% The compiler produces Stock.o from just Stock.cc
" |t doesn’t know that DividendStock exists during this process
" So then how does the emitted code know to call
Stock: :GetMarketValue () or
DividendStock: :GetMarketValue ()
or something else that might not exist yet?

- Function pointers!!!
Stock.h

rvirtual double Stock: :GetMarketValue () const;
virtual double Stock::GetProfit() const;

[double Stock: :GetMarketValue () const {
return get shares () * get share price();

}

double Stock::GetProfit() const {
return GetMarketValue () - GetCost();

} Stock.cc

23

YA/ UNIVERSITY of WASHINGTON L18: C++ Inheritance |

CSE333, Fall 2023

vtables and the vptr

+ If a class contains any virtual methods, the compiler
emits:

= A (single) virtual function table (vtable) for the class (ﬁ per C\MS)
- Contains a function pointer for each virtual method in the class

- The pointers in the vtable point to the most-derived function for that
class

= A virtual table pointer (vptr) for each object instance (l per 0\03*—50
- A pointer to a virtual table as a “hidden” member variable

- When the object’s constructor is invoked, the vptr is initialized to
point to the vtable for the object’s class

- Thus, the vptr “remembers” what class the object is

24

YA/ UNIVERSITY of WASHINGTON L18: C++ Inheritance | CSE333, Fall 2023

351 Throwback: Dynamic Dispatch

Point object

header |vtable ptr X Y

Point vtable:

pe=>222 K}
code for Point ()

code for Point’s samePlace ()

3DPoint object A
header | vtable X Y z
_——p| code for sayHi ()
3DPoint vtable: | — |

code for 3DPoint’s samePlace ()

Conld be Point or .
Java: / 3DPoind C pseudo-translation:

v
Point p = 2?2°?; // works regardless of what p is
return p.samePlace (q); return p->vtable[l] (p, 9g):;

25

YA/ UNIVERSITY of WASHINGTON

L18: C++ Inheritance |

CSE333, Fall 2023

vtable/vptr Example

(class Base { @ b (Base b;
public: A Derl dil;
virtual void F1(); Der Der?2 d2;
virtual void F2();
} i Base* bOptr = &b;
Base* blptr = &d1;
class Derl public Base { Base* b2ptr = &d2;
public:
virtual void F1(); bOptr->F1(); // Base: F10
bi bOptr->F2(); // Bose::F2()
class Der? public Base { blptr->F1 () ; /O/Denlei()
public: blptr->F2(); // Base:: FL()
virtual void F2();
\}; /,j—%ﬁprtr—>F1(); // Base:: FAQ)
(b2ptr->F2(); // De2F2L()
A?G.erev\ce'.’
pLdz.Fl () ; // Base ::F10)

26

YA/ UNIVERSITY of WASHINGTON L18: C++ Inheritance |

vtable/vptr Example

object class compiled
instances vtables code

Base: :F1 ()
push %rbp

b|vptr o=-

Base: :F2()
push %rbp

CSE333, Fall 2023

dl | vptr @=-

Derl: :F1()
push %rbp
b2 phr
SY

Der2::F2()

d2 | vptr @ push %rbp

Base b;
Derl dl;
Der2z2 d2;

Base* b2ptr = &d2;

b2ptr->F1() ;
// b2ptr -->
// d2.vptr —-->
// Der2.vtable.Fl -->
// Base::F1()
<« —nho (Am‘)l‘b\xﬁ\/ l
d2 o Fl () ’ . > con o‘o'hm'lze od'.
/ . r >

r26vt e. >>
// Base: .‘Fé()/llf\ard-cok (o\“‘fb)

27

L18: C++ Inheritance | CSE333, Fall 2023

YA/ UNIVERSITY of WASHINGTON

Let’s Look at Some Actual Code

+ Let’s examine the following code using objdump
" g++ -Wall —-g —-std=c++17 -o vtable vtable.cc

" objdump -CDS vtable > vtable.d vtable.cc

rclass Base {

public:
virtual void £1();
virtual void £2();

bg

class Derl : public Base {

public:
virtual void £1();

bg

int main (int argc, char** argv) {
Derl dl;
Base* bptr = &d1l;
bptr->£f1 () ; /] dore i indvedt)W ‘M\o orn viade <1y\'l'r>/
dl.f1(); // done vir hadoded Cal\i

28

