CSE333, Fall 2023

YA/ UNIVERSITY of WASHINGTON

C++ Class Details, Heap

CSE 333 Fall 2023

L12: C++ Class Details, Heap

Instructor: Chris Thachuk

Teaching Assistants:

Ann Baturytski
Yuquan Deng
Noa Ferman
James Froelich
Hannah Jiang
Yegor Kuznetsov

Humza Lala

Alan Li

Leanna Mi Nguyen
Chanh Truong
Jennifer Xu



YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Fall 2023

Relevant Course Information

X/
>

Exercise 6 due Wednesday

Exercise 7 out tomorrow (not due this week)

= Will build on Exercise 6 and use what a lot of is discussed today

Homework 2 due next Monday (10/30)
= Hw?2 partner declaration due this Thursday (10/26)
" File system crawler, indexer, and search engine

= Don’t forget to clone your repo to double-/triple-/quadruple-
check compilation!

= Don’t modify the header files!
Midterm this Friday in class (10/27)

= Asingle 3”"x5” index card with handwritten notes is allowed.



YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Fall 2023

Lecture Outline

+ Class Details

= Filling in some gaps from last time
+ Using the Heap

" new/delete/delete]]



YA/ UNIVERSITY of WASHINGTON

L12: C++ Class Details, Heap

Rule of Three

If you define any of:

L)

1) Destructor
2) Copy Constructor
3) Assignment (operator=)

+ Then you should normally define all three
= Can explicitly ask for default synthesized versions (C++11):

CSE333, Fall 2023

fclass Point {
public:
Point ()

~Point ()

default;
default;

Point (const Point& copyme)
Point& operator=(const Pointé& rhs)

the default
the default
the default
the default

default;
default; //

ctor
dtor
cctor

m_um




YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Fall 2023

Dealing with the Insanity (C++11)

« C++ style guide tip:
= Disabling the copy constructor and assignment operator can avoid
confusion from implicit invocation and excessive copying

Point_2011.h
(class Point { b
public:
Point (const int x, const int y) : x (x), y (y) { } // ctor
Point (const Pointé& copyme) = delete; // declare cctor and "="
Pointé& operator=(const Point& rhs) = delete; // as deleted (C++11)
private:
}Y; // class Point
Point w; // compiler error (no default constructor)
Point x(1, 2); // OK!
Point y = w; // compiler error (no copy constructor)
y = X; // compiler error (no assignment operator)
G y,




YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Fall 2023

Access Control

+ Access modifiers for members:
= public:accessible to all parts of the program
= private:accessible tothe member functions of the class

e —

- Private to class, not object instances

" protected: accessible to member functions of the class and
any derived classes (subclasses — more to come, later)

+ Reminders:

= Access modifiers apply to all members that follow until another
access modifier is reached

@ If no access modifier is specified, st ruct members default to
publicand class membersdefaulttoprivate



YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Fall 2023

Nonmember Functions

+ “Nonmember functions” are just normal functions that

happen to use some class

= Called like a regular function instead of as a member of a class
object instance
- This gets a little weird when we talk about operators...

= These do not have access to the class’ private members(mybe %m}\ getks)

+ Useful nonmember functions often included as part of

interface to a class
= Declaration goes in header file, but outside of class definition

M - Aon-men ber
named f double  Psnt: : Distance ( Poin‘f&)j double  Oislance (Po’w\ﬂg, Porif &) y
findin | ptL. Distance (pt2); Distance (ptL, ot 2"))'
e § Hloct Vecuer opecchet (Ve b, Floct  cpentor® (Vechr K, Vechw &)
6 L vec | * ve 2 < ‘{‘C:al —> vecl¥ vec 7__).



YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Fall 2023

friend Nonmember Functions

« A class can give a nonmember function (or class) access to
its non-public members by declaringitasa friend
within its definition
= Not a class member, but has access privileges as if it were

= friend functions are usually unnecessary if your class includes

appropriate “getter” public functions

Complex.h
N

((class Complex { declaraion udy

ol

friend std::istream& operator>>(std::istream& in, Complexé& a);

L }; // class Complex

[ std::istreams operator>>(std::istream& 1n, Complexé& a) {

| d(e/\ﬂ\'bv\ ()\,d..srde 6G c,\as;

\. J

Complex.cc g




YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Fall 2023

[ ]
When to use Nonmember and friend °I\
There is more to C++ object design that we don'+ \[4
have time to get to; these are good rules of thumb,
but be sure to think about your class carefully!

= QOperators that modify the object being called on
-« Assignment operator (operator=)

« Member functions:

= “Core” non-operator functionality that is part of the class
interface

+« Nonmember functions:

= Used for commutative operators

- e.g.,sovl + v2 isinvoked as operator+ (vl, v2)instead of
vl.operator+ (v2)

= |f operating on two types and the class is on the right-hand side
« e.g.,cin >> complex;

= Returning a “new” object, not modifying an existing one

" Only grant friend permission if you NEED to



YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Fall 2023

@ PO" Eve I‘YWhere pollev.com/cse333

doesnt vodiy objeds, commitutive
If we wanted to overload operator==to

compare two Point objects, what type
of function should it be?/ o need i Friend

< Reminder that Point has getters and a setter

A.
Hhis & nd a‘H\:I\S, S Mmewmber Lo ncd vy

B. _friend +member . duy oces nopdic dtameles
| C. non-friend + non-memberj

D. friend + non-member
E. I’'m lost...

10



YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Fall 2023

Same name, bt

Namespaces differewt
namespace
+» Each namespace is a separate scope  [:Tterator /

- . . htuTterator
= Useful for avoiding symbol collisions!

lowercase
+ Namespace deflnltlon/ Namespace docst add
L (namespace name/{ ” indentation to contents
// declarations go here Comment to remind that this
L )Q // namespace name T is end of wamespace

\—’no . . . , . .
= Doesn’t end with a semi-colon and doesn’t add to the indentation

of its contents
= Creates a new namespace name if it did not exist, otherwise adds

to the existing namespace (!)

- This means that components (e.g., classes, functions) of a namespace
can be defined in multiple source files

11



YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Fall 2023

Classes vs. Namespaces

+» They seems somewhat similar, but classes are not
Namespaces:
= There are no instances/objects of a namespace; a namespace is
just a group of logically-related things (classes, functions, etc.)

" To access a member of a namespace, you must use the fully
qualified name (i.e., nsp name: :member)

- Unless you are using that namespace

« You only used the fully qualified name of a class member when you
are defining it outside of the scope of the class definition

12



YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Fall 2023

Complex Example Walkthrough

See:
Complex.h
Complex.cc

testcomplex.cc

13



