
CSE333, Fall 2023L12: C++ Class Details, Heap

C++ Class Details, Heap
CSE 333 Fall 2023

Instructor: Chris Thachuk

Teaching Assistants:

Ann Baturytski Humza Lala
Yuquan Deng Alan Li
Noa Ferman Leanna Mi Nguyen
James Froelich Chanh Truong
Hannah Jiang Jennifer Xu
Yegor Kuznetsov

CSE333, Fall 2023L12: C++ Class Details, Heap

Relevant Course Information

v Exercise 6 due Wednesday
v Exercise 7 out tomorrow (not due this week)

§ Will build on Exercise 6 and use what a lot of is discussed today

v Homework 2 due next Monday (10/30)
§ Hw2 partner declaration due this Thursday (10/26)
§ File system crawler, indexer, and search engine
§ Don’t forget to clone your repo to double-/triple-/quadruple-

check compilation!
§ Don’t modify the header files!

v Midterm this Friday in class (10/27)
§ A single 3”x5” index card with handwritten notes is allowed.

2

CSE333, Fall 2023L12: C++ Class Details, Heap

Lecture Outline

v Class Details
§ Filling in some gaps from last time

v Using the Heap
§ new / delete / delete[]

3

CSE333, Fall 2023L12: C++ Class Details, Heap

Rule of Three

v If you define any of:
1) Destructor
2) Copy Constructor
3) Assignment (operator=)

v Then you should normally define all three
§ Can explicitly ask for default synthesized versions (C++11):

4

class Point {
 public:
 Point() = default; // the default ctor
 ~Point() = default; // the default dtor
 Point(const Point& copyme) = default; // the default cctor
 Point& operator=(const Point& rhs) = default; // the default "="
 ...

CSE333, Fall 2023L12: C++ Class Details, Heap

Dealing with the Insanity (C++11)

v C++ style guide tip:
§ Disabling the copy constructor and assignment operator can avoid

confusion from implicit invocation and excessive copying

5

class Point {
 public:
 Point(const int x, const int y) : x_(x), y_(y) { } // ctor
 ...
 Point(const Point& copyme) = delete; // declare cctor and "="
 Point& operator=(const Point& rhs) = delete; // as deleted (C++11)
 private:
 ...
}; // class Point

Point w; // compiler error (no default constructor)
Point x(1, 2); // OK!
Point y = w; // compiler error (no copy constructor)
y = x; // compiler error (no assignment operator)

Point_2011.h

CSE333, Fall 2023L12: C++ Class Details, Heap

Access Control

v Access modifiers for members:
§ public: accessible to all parts of the program
§ private: accessible to the member functions of the class

• Private to class, not object instances
§ protected: accessible to member functions of the class and

any derived classes (subclasses – more to come, later)

v Reminders:
§ Access modifiers apply to all members that follow until another

access modifier is reached
§ If no access modifier is specified, struct members default to
public and class members default to private

6

CSE333, Fall 2023L12: C++ Class Details, Heap

Nonmember Functions

v “Nonmember functions” are just normal functions that
happen to use some class
§ Called like a regular function instead of as a member of a class

object instance
• This gets a little weird when we talk about operators…

§ These do not have access to the class’ private members

v Useful nonmember functions often included as part of
interface to a class
§ Declaration goes in header file, but outside of class definition

7

CSE333, Fall 2023L12: C++ Class Details, Heap

friend Nonmember Functions

v A class can give a nonmember function (or class) access to
its non-public members by declaring it as a friend
within its definition
§ Not a class member, but has access privileges as if it were
§ friend functions are usually unnecessary if your class includes

appropriate “getter” public functions

8

class Complex {
 ...
 friend std::istream& operator>>(std::istream& in, Complex& a);
 ...
}; // class Complex

std::istream& operator>>(std::istream& in, Complex& a) {
 ...
}

Complex.h

Complex.cc

CSE333, Fall 2023L12: C++ Class Details, Heap

When to use Nonmember and friend

v Member functions:
§ Operators that modify the object being called on

• Assignment operator (operator=)

§ “Core” non-operator functionality that is part of the class
interface

v Nonmember functions:
§ Used for commutative operators

• e.g., so v1 + v2 is invoked as operator+(v1, v2)instead of
v1.operator+(v2)

§ If operating on two types and the class is on the right-hand side
• e.g., cin >> complex;

§ Returning a “new” object, not modifying an existing one
§ Only grant friend permission if you NEED to

9

There is more to C++ object design that we don’t
have time to get to; these are good rules of thumb,
but be sure to think about your class carefully!

STYLE
TIP

CSE333, Fall 2023L12: C++ Class Details, Heap

10

pollev.com/cse333

If we wanted to overload operator== to
compare two Point objects, what type
of function should it be?
v Reminder that Point has getters and a setter

A. non-friend + member
B. friend + member
C. non-friend + non-member
D. friend + non-member
E. I’m lost…

CSE333, Fall 2023L12: C++ Class Details, Heap

Namespaces

v Each namespace is a separate scope
§ Useful for avoiding symbol collisions!

v Namespace definition:
§ namespace name {
 // declarations go here
}

§ Doesn’t end with a semi-colon and doesn’t add to the indentation
of its contents

§ Creates a new namespace name if it did not exist, otherwise adds
to the existing namespace (!)
• This means that components (e.g., classes, functions) of a namespace

can be defined in multiple source files

11

namespace name {
// declarations go here
} // namespace name

ll::Iterator
ht::Iterator

Same name, but
different
namespace

Namespace doesn’t add
indentation to contents

Comment to remind that this
is end of namespace

lowercase

CSE333, Fall 2023L12: C++ Class Details, Heap

Classes vs. Namespaces

v They seems somewhat similar, but classes are not
namespaces:
§ There are no instances/objects of a namespace; a namespace is

just a group of logically-related things (classes, functions, etc.)
§ To access a member of a namespace, you must use the fully

qualified name (i.e., nsp_name::member)
• Unless you are using that namespace
• You only used the fully qualified name of a class member when you

are defining it outside of the scope of the class definition

12

CSE333, Fall 2023L12: C++ Class Details, Heap

Complex Example Walkthrough

See:
Complex.h
Complex.cc

testcomplex.cc

13

