CSE333, Fall 2023

YA/ UNIVERSITY of WASHINGTON

C++ Class Details, Heap

CSE 333 Fall 2023

L12: C++ Class Details, Heap

Instructor: Chris Thachuk

Teaching Assistants:

Ann Baturytski
Yuquan Deng
Noa Ferman
James Froelich
Hannah Jiang
Yegor Kuznetsov

Humza Lala

Alan Li

Leanna Mi Nguyen
Chanh Truong
Jennifer Xu

YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Fall 2023

Relevant Course Information

X/
>

Exercise 6 due Wednesday

Exercise 7 out tomorrow (not due this week)

= Will build on Exercise 6 and use what a lot of is discussed today

Homework 2 due next Monday (10/30)
= Hw?2 partner declaration due this Thursday (10/26)
" File system crawler, indexer, and search engine

= Don’t forget to clone your repo to double-/triple-/quadruple-
check compilation!

= Don’t modify the header files!
Midterm this Friday in class (10/27)

= Asingle 3”"x5” index card with handwritten notes is allowed.

YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Fall 2023

Lecture Outline

+ Class Details

= Filling in some gaps from last time
+ Using the Heap

" new/delete/delete]]

YA/ UNIVERSITY of WASHINGTON

L12: C++ Class Details, Heap

Rule of Three

If you define any of:

L)

1) Destructor
2) Copy Constructor
3) Assignment (operator=)

+ Then you should normally define all three
= Can explicitly ask for default synthesized versions (C++11):

CSE333, Fall 2023

fclass Point {
public:
Point ()

~Point ()

default;
default;

Point (const Point& copyme)
Point& operator=(const Pointé& rhs)

the default
the default
the default
the default

default;
default; //

ctor
dtor
cctor

m_um

YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Fall 2023

Dealing with the Insanity (C++11)

« C++ style guide tip:
= Disabling the copy constructor and assignment operator can avoid
confusion from implicit invocation and excessive copying

Point_2011.h
(class Point { b
public:
Point (const int x, const int y) : x (x), y (y) { } // ctor
Point (const Pointé& copyme) = delete; // declare cctor and "="
Pointé& operator=(const Point& rhs) = delete; // as deleted (C++11)
private:
}Y; // class Point
Point w; // compiler error (no default constructor)
Point x(1, 2); // OK!
Point y = w; // compiler error (no copy constructor)
y = X; // compiler error (no assignment operator)
G y,

YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap

CSE333, Fall 2023

Access Control

« Access modifiers for members:
= public:accessible to all parts of the program

"= private:accessible tothe member functions of the class
- Private to class, not object instances

" protected: accessible to member functions of the class and
any derived classes (subclasses — more to come, later)

+ Reminders:

= Access modifiers apply to all members that follow until another
access modifier is reached

" |f no access modifier is specified, st ruct members default to
publicand class membersdefaulttoprivate

YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Fall 2023

Nonmember Functions

+ “Nonmember functions” are just normal functions that

happen to use some class

= Called like a regular function instead of as a member of a class
object instance
- This gets a little weird when we talk about operators...

" These do not have access to the class’ private members

+ Useful nonmember functions often included as part of

interface to a class
= Declaration goes in header file, but outside of class definition

YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Fall 2023

friend Nonmember Functions

« A class can give a nonmember function (or class) access to
its non-public members by declaringitasa friend
within its definition
= Not a class member, but has access privileges as if it were

= friend functions are usually unnecessary if your class includes

appropriate “getter” public functions

Complex.h
N

(class Complex {
friend std::istream& operator>>(std::istream& in, Complexé& a);

L }; // class Complex

[std::istreams operator>>(std::istream& 1n, Complexé& a) {

}

\. J

Complex.cc g

YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Fall 2023

[]
When to use Nonmember and friend °I\
There is more to C++ object design that we don'+ \[4
have time to get to; these are good rules of thumb,
but be sure to think about your class carefully!

= QOperators that modify the object being called on
-« Assignment operator (operator=)

« Member functions:

= “Core” non-operator functionality that is part of the class
interface

+« Nonmember functions:

= Used for commutative operators

- e.g.,sovl + v2 isinvoked as operator+ (vl, v2)instead of
vl.operator+ (v2)

= |f operating on two types and the class is on the right-hand side
« e.g.,cin >> complex;

= Returning a “new” object, not modifying an existing one

" Only grant friend permission if you NEED to

YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Fall 2023

@ PO" Eve I‘YWhere pollev.com/cse333

If we wanted to overload operator==to
compare two Point objects, what type
of function should it be?

< Reminder that Point has getters and a setter
A.

friend + member

B.

C. non-friend + non-member
D. friend + non-member

E.

I’'m lost...

10

YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Fall 2023

Same name, bt

Namespaces differewt
namespace
+» Each namespace is a separate scope [:Tterator /

- . . htuTterator
= Useful for avoiding symbol collisions!

lowercase
+~ Namespace deflnltlon/ Namespace docst add
L (namespace name/{ ” indentation to contents
// declarations go here Comment to remind that this
\} // namespace name] is end of vamespace

= Doesn’t end with a semi-colon and doesn’t add to the indentation

of its contents
= Creates a new namespace name if it did not exist, otherwise adds

to the existing namespace (!)

- This means that components (e.g., classes, functions) of a namespace
can be defined in multiple source files

11

YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Fall 2023

Classes vs. Namespaces

+» They seems somewhat similar, but classes are not
Namespaces:
= There are no instances/objects of a namespace; a namespace is
just a group of logically-related things (classes, functions, etc.)

" To access a member of a namespace, you must use the fully
qualified name (i.e., nsp name: :member)

- Unless you are using that namespace

« You only used the fully qualified name of a class member when you
are defining it outside of the scope of the class definition

12

YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Fall 2023

Complex Example Walkthrough

See:
Complex.h
Complex.cc

testcomplex.cc

13

YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Fall 2023

Lecture Outline

« Class Details

" Filling in some gaps from last time
+ Using the Heap
" new/delete/delete]]

14

YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Fall 2023

C++1l nullptr AALE

+ Cand C++ have long used NULL as a pointer value that
references nothing

% C++11 introduced a new literal for this: nullptr

"= New reserved word

" |nterchangeable with NUL L for all practical purposes, but it has
type T* for any/every T, and is not an integer value

- Avoids funny edge cases (see C++ references for details)
- Still can convert to/from integer O for tests, assighment, etc.

= Advice: prefer nul lptrin C++11 code
- Though NULL will also be around for a long, long time

15

YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Fall 2023

new/delete

+ To allocate on the heap using C++, you use the new
keyword instead of malloc () from stdlib.h
" You can use new to allocate an object (e.g., new Point)

" You can use new to allocate a primitive type (e.g., new int)

+ To deallocate a heap-allocated object or primitive, use the
delete keyword instead of £ree () from stdlib.h
= Don’t mix and match!
- Never free () something allocated with new

- Never delete something allocated withmalloc ()
- Careful if you're using a legacy C code library or module in C++

16

YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Fall 2023

new/delete Behavior

+» new behavior:
= When allocating you can specify a constructor or initial value
« e.g.,new Point(l, 2),new 1int (333)

= If no initialization specified, it will use default constructor for
objects and uninitialized (“mystery”) data for primitives

" You don’t need to check that new returns nul lptr

- When an error is encountered, an exception is thrown (that we won’t
worry about)

« delete behavior:

" |fyou delete already deleted memory, then you will get
undefined behavior (same as when you double £ree in C)

17

YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Fall 2023

new/delete Example

(int* AllocateInt (int x) { h (Point* AllocatePoint (int x, int vy) {N
int* heapy int = new int; Point* heapy pt = new Point (x,y);
*heapy int = x; return heapy pt;
return heapy int; }

U J U y,

heappoint.cc

r#include "Point.h")

// definitions of AllocatelInt () and AllocatePoint ()

int main() {
Point* x = AllocatePoint(l, 2);
int* y = AllocatelInt (3);

cout << "x's x coord: " << x->get x() << endl;
cout << "y: " <K<K y << ", Fy: " K *y << endl;
delete x;

delete vy;

return EXIT SUCCESS;

YA/ UNIVERSITY of WASHINGTON

L12: C++ Class Details, Heap

Dynamically Allocated Arrays

+ To dynamically allocate an array:

= Defaultinitialize: | type* name = new typel[size];

+» To dynamically deallocate an array:
" Use|delete[] name;

" |tisanincorrecttouse “delete name;” onan array

- The compiler probably won’t catch this, though (!) because it can’t

always tell if name* was allocated with new type[sizel;
or new type;

— Especially inside a function where a pointer parameter could point to a
single item or an array and there’s no way to tell which!

- Result of wrong delete is undefined behavior

CSE333, Fall 2023

19

L12: C++ Class Details, Heap

YA/ UNIVERSITY of WASHINGTON

CSE333, Fall 2023

Arrays Example (primitive)

arrays.cc

r#include "Point.h"

int main () {
int stack int;
int* heap int =
int* heap int init =

new int;
new int(12);

int stack arr[3];
int* heap arr = new int[3];

new int[3] ;

int* heap arr init val = ()
new 1int[3] {4,

int* heap arr init 1lst =

return EXIT SUCCESS;

delete heap int; //
delete heap int init; //
delete heap arr; //
delete[] heap arr init val; //

5};

// C++11

~

20

YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Fall 2023

Arrays Example (class objects)

arrays.cc

~

r#include "Point.h"

int main () {

Point stack pt(l, 2);
Point* heap pt = new Point (1, 2);

Point* heap pt arr err = new Point([2];

Point* heap pt arr init 1lst = new Point[2]{{1, 2}, {3, 4}};
// C++11

delete heap pt;
delete[] heap pt arr init lst;

return EXIT SUCCESS;

21

YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Fall 2023

malloc vs. new

atioc) | ner
a function an operator or keyword

arrays, structs, objects,

Allocated memory for anythin L
y Y 5 primitives
avoid* appropriate pointer type
Returns PProp , P P
(should be cast) (doesn’t need a cast)
When out of memory returns NULL throws an exception

Deallocating free () deleteordeletel]

22

YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Fall 2023

@ PO" Eve I‘YWhere pollev.com/cse333

What will happen when we invoke Bar () ?

" If there is an error, (Foo::Foo(int val) { Init(val);)
how would you fix it? | Foo::~Foo() { delete foo ptr ; }

volid Foo::Init(int wval) {
foo ptr = new int;
*foo ptr = val;

}

l\, Foo& Foo::operator=(const Foo& rhs) {
delete foo ptr ;
B. Bad delete Init (* (rhs.foo ptr));
return *this;
C. Memory leak }
D. “Works” fine void Bar() {
Foo a(10);
E. We're lost... Foo b(20);
a = a;

YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Fall 2023

Rule of Three, Revisited

+» Now what will happen when we invoke Bar () ?

= |f there is an error, (Foo::Foo(int val) { Init(val); })

how would you fix it? Foo::~Foo () { delete foo ptr ; }

volid Foo::Init(int wval) {
foo ptr = new int;
*foo ptr = val;

}

Foo& Foo::operator=(const Foo& rhs) {
if (&rhs != this) {
delete foo ptr ;
Init (* (rhs.foo ptr));
}

return *this;

}

void Bar () {
Foo a(10);
Foo b = a;
U y

24

YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Fall 2023

Extra Exercise #1

+ Worite a C++ function that:

= Uses new to dynamically allocate an array of strings and uses
delete[] tofreeit

= Uses new to dynamically allocate an array of pointers to strings
- Assign each entry of the array to a string allocated using new

= Cleans up before exiting
- Use delete to delete each allocated string

- Uses delete[] to delete the string pointer array

« (whew!)

25

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Fall 2023

BONUS SLIDES

An extra example for practice with class design and heap-
allocated data: a C-string wrapper class classed Str.

26

YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Fall 2023

Heap Member (extra example)

+ Let’s build a class to simulate some of the functionality of
the C++ string
" |nternal representation: c-string to hold characters

+» What might we want to implement in the class?

27

YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Fall 2023

Str Class

Str.h

(#include <iostream>
using namespace std; // should replace this

class Str {

public:
Str(); // default ctor
Str (const char* s); // c-string ctor
Str (const Str& s); // copy ctor
~Str () ; // dtor

int length() const; // return length of string
char* ¢ _str() const; // return a copy of st
void append(const Stré& s);

Str& operator=(const Str& s); // string assignment

friend std::ostreamé& operator<<(std::ostreamé& out, const Str& s);

private:
char* st ; // c-string on heap (terminated by '\0')

; class Str
\} //)

28

YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Fall 2023

Str::append (extra example)

+» Complete the append () member function:

" char* strncpy (char* dst, char* src, size t num);

" char* strncat (char* dst, char* src, size t num);

#include <cstring>

#include "Str.h"

// append contents of s to the end of this string
void Str::append(const Stré& s) {

YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Fall 2023

Clone

« C++11 style guide tip:

= |f you disable them, then you instead may want an explicit
“Clone” function that can be used when occasionally needed

Point_2011.h
é \)
class Poilnt {
public:
Point (const int x, const int y) : x (x), y (y) { } // ctor
void Clone (const Point& copy from me) ;
Point (Pointé& copyme) = delete; // disable cctor
Point& operator=(Point& rhs) = delete; // disable "="
private:
Y; // class Point
. J

sanepoint.cc

Point x(1, 2); // OK
Point y (3, 4); // OK
x.Clone(y); // OK

30

