
CSE333, Fall 2023L10: C++ Constructor Insanity

1

pollev.com/cse333

About how long did Exercise 4 take you?

A. [0, 2) hours
B. [2, 4) hours
C. [4, 6) hours
D. [6, 8) hours
E. 8+ Hours
F. I didn’t submit / I prefer not to say

CSE333, Fall 2023L10: C++ Constructor Insanity

C++ Constructor Insanity (part 1)
CSE 333 Fall 2023

Instructor: Chris Thachuk

Teaching Assistants:

Ann Baturytski Humza Lala
Yuquan Deng Alan Li
Noa Ferman Leanna Mi Nguyen
James Froelich Chanh Truong
Hannah Jiang Jennifer Xu
Yegor Kuznetsov

CSE333, Fall 2023L10: C++ Constructor Insanity

Relevant Course Information

v Exercise 6 released today, due next Monday (10/23)
§ Write a substantive class in C++ (uses a lot of what we will talk

about in lecture today)

v Midterm in next Friday’s class (10/27)
§ See course website for details & sample midterms
§ See Ed post about potential review session

v Homework 2 due on 10/30
§ See Ed post about partner finding & confirmation

3

CSE333, Fall 2023L10: C++ Constructor Insanity

Lecture Outline (cont’d from last lecture)

v C++ Classes Intro

4

CSE333, Fall 2023L10: C++ Constructor Insanity

struct vs. class

v In C, a struct can only contain data fields
§ No methods and all fields are always accessible

v In C++, struct and class are (nearly) the same!
§ Both can have methods and member visibility

(public/private/protected)
§ Minor difference: members are default public in a struct and

default private in a class

v Common style convention:
§ Use struct for simple bundles of data
§ Use class for abstractions with data + functions

5

STYLE
TIP

CSE333, Fall 2023L10: C++ Constructor Insanity

Memory Diagrams for Objects

v An object is an instance of a class that maintains its state
independent from other objects
§ This state is the collection of its data members
§ Conceptually, an object acts like a collection of data fields (plus

class metadata)
• Layout is not specified or guaranteed, unlike structs in C

v Drawn out as variables within variables:

6

class Point {
 ...

 private:
 int x_; // data member
 int y_; // data member
}; // class Point

CSE333, Fall 2023L10: C++ Constructor Insanity

Lecture Outline

v Constructors
v Copy Constructors
v Assignment (next lecture)
v Destructors (next lecture)

7

CSE333, Fall 2023L10: C++ Constructor Insanity

Constructors

v A constructor (ctor) initializes a newly-instantiated object
§ A class can have multiple constructors that differ in parameters
§ A constructor must be invoked when creating a new instance of

an object – which one depends on how the object is instantiated

v Written with the class name as the method name:

§ C++ will automatically create a synthesized default constructor if
you have no user-defined constructors
• Takes no arguments and calls the default ctor on all non-“plain old

data” (non-POD) member variables
• Synthesized default ctor will fail if you have non-initialized const or

reference data members

8

Point(const int x, const int y);

CSE333, Fall 2023L10: C++ Constructor Insanity

Synthesized Default Constructor Example

9

class SimplePoint {
 public:
 // no constructors declared!
 int get_x() const { return x_; } // inline member function
 int get_y() const { return y_; } // inline member function
 double Distance(const SimplePoint& p) const;
 void SetLocation(int x, int y);

 private:
 int x_; // data member
 int y_; // data member
}; // class SimplePoint SimplePoint.h

#include "SimplePoint.h"

... // definitions for Distance() and SetLocation()

int main(int argc, char** argv) {
 SimplePoint x; // invokes synthesized default constructor
 return EXIT_SUCCESS;
}

SimplePoint.cc

CSE333, Fall 2023L10: C++ Constructor Insanity

Synthesized Default Constructor

v If you define any constructors, C++ assumes you have
defined all the ones you intend to be available and will
not add any others

10

#include "SimplePoint.h"

// defining a constructor with two arguments
SimplePoint::SimplePoint(const int x, const int y) {
 x_ = x;
 y_ = y;
}

void Foo() {
 SimplePoint x; // compiler error: if you define any
 // ctors, C++ will NOT synthesize a
 // default constructor for you.

 SimplePoint y(1, 2); // works: invokes the 2-int-arguments
 // constructor
}

CSE333, Fall 2023L10: C++ Constructor Insanity

Multiple Constructors (overloading)

11

#include "SimplePoint.h"

// default constructor
SimplePoint::SimplePoint() {
 x_ = 0;
 y_ = 0;
}

// constructor with two arguments
SimplePoint::SimplePoint(const int x, const int y) {
 x_ = x;
 y_ = y;
}

void Foo() {
 SimplePoint x; // invokes the default constructor
 SimplePoint y(1, 2); // invokes the 2-int-arguments ctor
 SimplePoint a[3]; // invokes the default ctor 3 times
}

CSE333, Fall 2023L10: C++ Constructor Insanity

Initialization Lists

v C++ lets you optionally declare an initialization list as part
of a constructor definition
§ Initializes fields according to parameters in the list
§ The following two are (nearly) identical:

12

// constructor with an initialization list
Point::Point(const int x, const int y) : x_(x), y_(y) {
 std::cout << "Point constructed: (" << x_ << ",";
 std::cout << y_<< ")" << std::endl;
}

Point::Point(const int x, const int y) {
 x_ = x;
 y_ = y;
 std::cout << "Point constructed: (" << x_ << ",";
 std::cout << y_<< ")" << std::endl;
}

CSE333, Fall 2023L10: C++ Constructor Insanity

Initialization vs. Construction

§ Data members in initializer list are initialized in the order they are
defined in the class, not by the initialization list ordering (!)
• Data members that don’t appear in the initialization list are default

initialized/constructed before body is executed

§ Initialization preferred to assignment to avoid extra steps
• Real code should never mix the two styles

13

class Point3D {
 public:
 // constructor with 3 int arguments
 Point3D(const int x, const int y, const int z) : y_(y), x_(x) {
 z_ = z;
 }

 private:
 int x_, y_, z_; // data members
}; // class Point3D

First, initialization list is applied.

Next, constructor body is executed.

STYLE
TIP

CSE333, Fall 2023L10: C++ Constructor Insanity

Lecture Outline

v Constructors
v Copy Constructors
v Assignment (next lecture)
v Destructors (next lecture)

14

CSE333, Fall 2023L10: C++ Constructor Insanity

Copy Constructors

v C++ has the notion of a copy constructor (cctor)
§ Used to create a new object as a copy of an existing object

15

Point::Point(const int x, const int y) : x_(x), y_(y) { }

// copy constructor
Point::Point(const Point& copyme) {
 x_ = copyme.x_;
 y_ = copyme.y_;
}

void Foo() {
 Point x(1, 2); // invokes the 2-int-arguments constructor

 Point y(x); // invokes the copy constructor
 // could also be written as "Point y = x;"
}

§ Initializer lists can also be used in copy constructors (preferred)

STYLE
TIP

CSE333, Fall 2023L10: C++ Constructor Insanity

Synthesized Copy Constructor

v If you don’t define your own copy constructor, C++ will
synthesize one for you
§ It will do a shallow copy of all of the fields (i.e., member variables)

of your class
§ Sometimes the right thing; sometimes the wrong thing

16

#include "SimplePoint.h"

... // definitions for Distance() and SetLocation()

int main(int argc, char** argv) {
 SimplePoint x;
 SimplePoint y(x); // invokes synthesized copy constructor
 ...
 return EXIT_SUCCESS;
}

CSE333, Fall 2023L10: C++ Constructor Insanity

When Do Copies Happen?

v The copy constructor is invoked if:
§ You initialize an object from

another object of the same
type:

§ You pass a non-reference
object as a value parameter
to a function:

§ You return a non-reference
object value from a function:

17

void Foo(Point x) { ... }

Point y; // default ctor
Foo(y); // copy ctor

Point x; // default ctor
Point y(x); // copy ctor
Point z = y; // copy ctor

Point Foo() {
 Point y; // default ctor
 return y; // copy ctor
}

CSE333, Fall 2023L10: C++ Constructor Insanity

Compiler Optimization

v The compiler sometimes uses a “return by value
optimization” or “move semantics” to eliminate
unnecessary copies
§ Sometimes you might not see a constructor get invoked when you

might expect it

18

Point Foo() {
 Point y; // default ctor
 return y; // copy ctor? optimized?
}

int main(int argc, char** argv) {
 Point x(1, 2); // two-ints-argument ctor
 Point y = x; // copy ctor
 Point z = Foo(); // copy ctor? optimized?
}

CSE333, Fall 2023L10: C++ Constructor Insanity

Extra Exercise #1

v Write a C++ program that:
§ Has a class representing a 3-dimensional point
§ Has the following methods:

• Return the inner product of two 3D points
• Return the distance between two 3D points
• Accessors and mutators for the x, y, and z coordinates

30

CSE333, Fall 2023L10: C++ Constructor Insanity

Extra Exercise #2

v Write a C++ program that:
§ Has a class representing a 3-dimensional box

• Use your Extra Exercise #1 class to store the coordinates of the
vertices that define the box

• Assume the box has right-angles only and its faces are parallel to the
axes, so you only need 2 vertices to define it

§ Has the following methods:
• Test if one box is inside another box
• Return the volume of a box
• Handles <<, =, and a copy constructor
• Uses const in all the right places

31

